Клиффорд Пиковер - Искусственный интеллект. Иллюстрированная история. От автоматов до нейросетей
- Название:Искусственный интеллект. Иллюстрированная история. От автоматов до нейросетей
- Автор:
- Жанр:
- Издательство:Синдбад
- Год:2021
- Город:Москва
- ISBN:978-5-00131-330-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Клиффорд Пиковер - Искусственный интеллект. Иллюстрированная история. От автоматов до нейросетей краткое содержание
Искусственный интеллект. Иллюстрированная история. От автоматов до нейросетей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Экспертные системы применяются для диагностики, прогнозирования, планирования и классификации в самых разных областях, таких как медицина, оценка страховых рисков, геологоразведка, и т. д. У наиболее удобных экспертных систем механизм логического вывода также выдает разъяснения, чтобы пользователь мог понять ход рассуждений. Одной из первых известных экспертных систем стала Dendral (сокращение от dendritic algorithm – ветвящийся алгоритм), созданная в Стэнфордском университете в 1965 г., чтобы помочь химикам идентифицировать неизвестные органические вещества по их масс-спектрам. В 1970-е гг. в том же Стэнфорде была разработана ИИ-система MYCIN для диагностики бактериальных инфекций и рекомендации антибиотиков и их дозировки. Первые экспертные системы часто создавались на языках Лисп и Пролог.
При разработке экспертных систем часто возникают проблемы, связанные с получением и кодификацией знаний от занятых узких специалистов или из книг и статей. Кроме того, бывает непросто представить знания в виде набора фактов и правил, с которыми будут согласны все эксперты, а также присвоить им весовые коэффициенты (для обозначения вероятности или важности). Сегодня многие люди пользуются «рекомендательными системами» – смежной технологией ИИ, которая больше ориентирована на предсказание предпочтений пользователей в разных областях, от фильмов и книг до финансовых услуг и потенциальных брачных партнеров.
СМ. ТАКЖЕ «Человеческое использование человеческих существ» (1950), Представление знаний (1959), Глубокое обучение (1965)

Экспертные ИИ-системычасто создаются путем извлечения специальных знаний людей (на этом рисунке они изображены в виде светящихся лампочек). Экспертная информация при этом преобразуется в набор вероятностных правил.
Нечеткая логика. 1965
«Теория нечетких множеств применяется в коммерческих экспертных системах и устройствах для управления поездами и лифтами, – пишет ученый Джейкоби Картер. – Ее также объединяют с нейросетями для управления производством полупроводников. Благодаря встраиванию нечеткой логики и нечетких множеств в производство были заметно улучшены многие ИИ-системы. Этот подход оказался особенно эффективным в случаях с неоднозначными данными или недостаточно изученными правилами».
Классическая двузначная логика имеет дело с условиями, которые либо истинны, либо ложны. Теория нечетких множеств, описывающая элементы множеств с разными степенями принадлежности, была предложена математиком и информатиком Лотфи Заде (1921–2017) в 1965 г., а в 1973 г. Заде представил подробное описание нечеткой логики , которая выводится из теории нечетких множеств и предполагает существование непрерывного диапазона истинностных значений.
Нечеткая логика находит применение в самых разных сферах. В качестве примера можно привести устройства с системой контроля температуры. Функция принадлежности применима к понятиям «холодный», «теплый» и «горячий», но одному замеру могут соответствовать три значения, такие как «не холодный», «слегка теплый» и «слегка горячий». Заде считал, что если запрограммировать регуляторы в цепи обратной связи на работу с неточным, зашумленным вводом, то они будут более эффективны и просты в реализации.
Одно из значимых событий в истории нечеткой логики произошло в 1974 г., когда Ибрагим Мамдани (1942–2010) из Лондонского университета использовал ее для управления паровым двигателем. В 1980 г. нечеткая логика была применена для регулировки цементной печи. Японские компании использовали нечеткую логику для управления процессами очистки воды и железнодорожными сетями. Сегодня она применяется для управления сталелитейными заводами, процессами ферментации, автомобильными двигателями, антиблокировочными системами, системами проявки цветных пленок и устройствами для обработки стекла. Ее встраивают в компьютерные программы для биржевой торговли, системы распознавания различий в письменной и разговорной речи, фотокамеры с автоматической фокусировкой и стиральные машины.
СМ. ТАКЖЕ «Органон» Аристотеля (ок. 350 до н. э.), Булева алгебра (1854), Экспертные системы (1965)

На схеме из патента США № 5579439представлена архитектура нечеткой логики интеллектуального контроллера в системе управления заводом. Архитектура включает в себя искусственную нейросеть для генерации правил нечеткой логики и значений функции принадлежности. «Слой введения нечеткости нейросети механизма обучения может состоять из четырех слоев нейронов: A, B, C, D».
Глубокое обучение. 1965
ИИ-технологии задействуют различные методы, помогающие машинам имитировать человеческий разум. Машинное обучение – это класс методов ИИ, с помощью которых машины совершенствуются в выполнении задач посредством практики и опыта. Глубокое обучение – это форма машинного обучения, позволяющая системам самостоятельно учиться выполнять задачи (например, играть в игры или распознавать кошек на фотографиях) с помощью глубоких нейросетей. Такие нейросети состоят из множества промежуточных слоев искусственных нейронов – в отличие от неглубоких сетей, в которых всего один-два слоя. Хотя термин «глубокое обучение» появился только в 1986 г., советский математик Алексей Ивахненко (1913–2007) еще в 1965 г. проделал важную работу по созданию контролируемых глубоких многослойных перцептронов.
В целом многочисленные слои нейронов могут выделять признаки из данных на разных уровнях иерархии (например, реагируя на простые контуры на одном уровне и на черты лица на другом). Обучение глубоких нейросетей может быть основано на методе обратного распространения ошибки: информация передается по системе в обратном направлении, от выхода к входу, чтобы система увидела ошибку и скорректировала работу.
Глубокое обучение успешно применяется в распознавании речи, компьютерном зрении, обработке естественного языка, соцсетях, переводах с одного языка на другой, разработке лекарств, периодизации живописных полотен по особенностям стиля, системах рекомендации товаров, оценке эффективности маркетинговых решений, реконструкции и очистке изображений, играх, идентификации людей на фотографиях и во многих других сферах.
Специалист по технологиям Джереми Фейн пишет: «С появлением глубокого обучения машинное обучение вышло на новый уровень. Если раньше машинное обучение позволяло довольно успешно автоматизировать повторяющиеся задачи или анализировать данные, то теперь оно воплощает будущее в жизнь в виде компьютеров, которые могут видеть, слышать и играть во все виды игр».
Читать дальшеИнтервал:
Закладка: