Максим Филипповский - Генезис. Небо и Земля. Том 1. История
- Название:Генезис. Небо и Земля. Том 1. История
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005620590
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Максим Филипповский - Генезис. Небо и Земля. Том 1. История краткое содержание
Генезис. Небо и Земля. Том 1. История - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
§232. В 1918 году немецкий математик Герман Клаус Гуго Вейль предпринял попытку создать первую единую теорию поля, или теорию всего, в которой электромагнитное и гравитационное поля являлись бы геометрическими свойствами пространства-времени. [488] Немецкий математик Теодор Калуца решился предложить свой оригинальный подход к единой теории поля. В апреле 1919 году Калуце удалось посредством введения «свернувшегося» пятого измерения доказать возможность объединить уравнения электромагнетизма и гравитации в обычном 4-мерном пространстве. Таким образом, он пришел к выводу, что в 5-мерном пространстве гравитация и электромагнетизм едины. Калуца изложил свою теорию в письме к Эйнштейну, и тот посоветовал ему продолжить занятия этой темой. Эйнштейн опубликовал работу Калуцы (1921), в которой расширено пространство Минковского до 5-мерного пространства и получены из уравнений общей теории относительности классические уравнения Максвелла. [489] Шведским физиком Оскаром Клейном (1926) было предложено обоснование ненаблюдаемости пятого измерения (его компактности). [490] Теория Калуцы-Клейна – одна из моделей гравитации, позволяющая объединить два фундаментальных физических взаимодействия: гравитацию и электромагнетизм 157. В 1980-х Майкл Грин и Джон Шварц показали, что теория суперструн способна объединить как гравитацию с электромагнетизмом, так и сильные и слабые взаимодействия. Теория Калуцы-Клейна оперирует 10-мерным пространством, притом что 6 «лишних» измерений считаются «свёрнутыми». Эта теория предполагает, что десять гравитационных потенциалов Эйнштейна и четыре электромагнитных потенциала связаны с коэффициентами линейного элемента риманого пространства, которое, кроме четырех обычных измерений, содержит еще одно пятое измерение. При этом уравнения движения электрических частиц также в электромагнитных полях принимают форму уравнений геодезических линий. Если же они трактуются как радиальные уравнения, рассматривая материю как вид распространения волны, то почти само собой приходит дифференциальное уравнение второго порядка, которое можно рассматривать как обобщение обычного волнового уравнения.
§233. Бертиль Линдблад (1922) обнаружил зависимость величины поглощения в ультрафиолетовой части спектра в звёздах поздних спектральных классов от их светимости и правильно отождествил источник поглощения с молекулой циана, разработав на основе этого эффекта метод определения светимости слабых холодных звёзд по спектрам с низкой дисперсией 158. [491]
§234. Шведский астроном Гуннар Малмквист (1922) описал эффект в наблюдательной астрономии, приводящий к преимущественному обнаружению объектов с высокой светимостью, который получил название смещение или сдвиг Малмквиста. [492] Поскольку наблюдаемые звёзды и галактики кажутся слабее при большем удалении от наблюдателя, то видимая звёздная величина с расстоянием будет увеличиваться до тех пор, пока не превысит предельное значение для такого обзора. Объекты с более высокой светимостью могут наблюдаться с большего расстояния, что может создать ложную зависимость, дающую усиление блеска с расстоянием. При наблюдении области неба мы можем видеть звёзды только до определённой звёздной величины. Нам будут видны далёкие звёзды высокой светимости и близкие звёзды, причём как яркие, так и слабые. Таким образом, будет казаться, что до определённого расстояния звёзд высокой светимости гораздо больше, чем слабых. На самом же деле, слабых звёзд гораздо больше, но они не попадают в наблюдаемую выборку, поскольку слишком слабые. Смещение в сторону звёзд большей светимости при наблюдении участка неба влияет на определение среднего значения абсолютной звёздной величины и среднего расстояния до группы звёзд. Поскольку звёзды высокой светимости видны на больших расстояниях, то может казаться, что рассматриваемая выборка находится в среднем дальше, а каждая звезда вследствие этого будет считаться имеющей более высокую светимость. В статистике данное смещение является систематической ошибкой и влияет на результаты обзоров в выборках, ограниченных по видимой звёздной величине, в которые не попадают звёзды, видимые звёздные величины которых превышают определенное значение.
§235. Первая из нестационарных моделей Вселенной – космологическая модель Александра Александровича Фридмана (1922), описывает однородную изотропную, в общем случае нестационарную Вселенную с веществом, обладающую положительной, нулевой или отрицательной постоянной кривизной. [493] Эта работа учёного стала первым основным теоретическим развитием общей теории относительности после работ Эйнштейна. Фридман составил уравнение, описывающее развитие во времени однородной и изотропной Вселенной (Вселенной Фридмана) в рамках общей теории относительности, которое может быть проинтегрировано аналитически для двух важных предельных случаев – вселенной, заполненной пылью, и вселенной, заполненной излучением. [494] Фридман указал на расширение Вселенной, экстраполируя ситуацию в прошлое, исходя из того, что в самом начале вся материя Вселенной была сосредоточена в компактной области, из которой и начала свой разлёт. Поскольку во Вселенной очень часто происходят процессы взрывного характера, то у Фридмана возникло предположение, что и в самом начале её развития также лежит взрывной процесс – Большой взрыв, который произошёл одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной – галактики, звёзды, Солнце и планеты, в том числе Земля и всё что на ней.
§236. С 1919 года Эдвин Пауэлл Хаббл начал работать на самом крупном астрономическом инструменте того времени на 2,5-метровом телескопе Хукера в обсерватории Маунт-Вилсон (Калифорния, США). [495] В 1922 году Хаббл определил разницу между эмиссионными и отражательными туманностями, и предложил подразделить наблюдаемые туманности на внегалактические (галактики) и галактические (газопылевые). [496] Большинство учёных тогда были уверены, что Вселенная состоит из единственной галактики – Млечного Пути. Хаббл опроверг это мнение, наблюдая за несколькими спиральными туманностями, включая Туманность Андромеды и Треугольник. Он выяснил, что эти туманности расположены слишком далеко, чтобы быть частью Млечного Пути. В 1924—1926 годах он обнаружил на фотографиях некоторых ближайших галактик звёзды, и доказал, что они представляют собой системы, подобные нашей галактике Млечный Путь. [497] Хаббл измерил расстояние до других галактик, используя цефеиды (переменные звезды), доказав, что в действительности это были отдельные галактики, расположенные за пределами нашей собственной. Это открытие фундаментальным образом изменило научное видение Вселенной.
Читать дальшеИнтервал:
Закладка: