Александр Полулях - Тяжелосредное обогащение углей
- Название:Тяжелосредное обогащение углей
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2020
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Полулях - Тяжелосредное обогащение углей краткое содержание
Тяжелосредное обогащение углей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Таким образом, энтропийный метод оценки эффективности работы аппаратов в предложенном виде имеет ряд существенных недостатков и требует доработки.
Из изложенного следует, что каждый из рассмотренных методов оценки эффективности обогащения угля имеет определенные достоинства и недостатки.
Предпочтение следует отдать методу оценки по кривым разделения Тромпа – Терра, который достаточно хорошо обоснован, не зависит от обогатимости исходного угля и позволяет рассчитать ожидаемые качественно-количественные результаты обогащения.
Однако для практического применения на производстве удобнее пользоваться методом нормированных засорений продуктов обогащения.
Глава 2. Обогащение крупного угля в сепараторах с магнетитовой суспензией
2.1. Тяжелосредные сепараторы
2.1.1. Принцип действия и элементы теоретических основ обогащения в тяжелосредных сепараторах
Разделение угля по плотности в сепараторах с тяжелой средой происходит под действием гравитационных сил и сил сопротивления среды. Условия разделения частиц обогащаемого угля в тяжелой среде определяются соотношением сил, действующих на частицу: силы тяжести F g , подъемной (архимедовой) силы F A, силы сопротивления среды и сил механического взаимодействия частиц при их соприкосновении. Равнодействующая G сил, действующих на частицу в неподвижной среде:

С учетом того, что F g=Vδ чg и F А=Vδ сg где V – объем частицы; δ ч и δ с – плотность частицы и среды; g – ускорение свободного падения, получим

Возможны три условия разделения частиц: δ ч > δ с; δ ч < δ с ; и δ ч = δ с . В первом случае G>0 и частица тонет, во втором G<0 и частица всплывает, в третьем G=0 частица находится во взвешенном состоянии.
Сопротивления, действующие на частицу, подразделяют на: сопротивление, обусловленное внутренним трением или вязкостью среды, и динамическое сопротивление. В зависимости от размеров частиц, движущихся в тяжелой среде, преобладает сопротивление того или иного вида. При движении крупных частиц (например, размером более 6 мм), на них действует главным образом сила динамического сопротивления среды, для мелких частиц, наоборот, преобладает сопротивление, обусловленное вязкостью среды. Сопротивление среды зависит от размеров и формы частиц, плотности и вязкости среды. Чем больше размеры частиц и чем меньше вязкость среды, тем относительно меньшее сопротивление испытывает частица. Подвижность частиц в тяжелой среде зависит от их размера и разницы в плотностях частиц и тяжелой среды. Чем больше размер частиц и больше разница между плотностями частиц и тяжелой среды, тем быстрее происходит разделение. Частицы, плотность которых близка к плотности тяжелой среды, разделяются медленно. Движущиеся в суспензии частицы вытесняют соответствующий объем суспензии, т. е. воды вместе с частицами утяжелителя.
Если зерна обогащаемого материала близки по крупности к частицам утяжелителя, то они могут вытеснять только воду и вести себя как взвешенные частицы утяжелителя. Эффективность обогащения гравитационными методами повышается с увеличением разности скоростей падения разделяемых зерен. С уменьшением размеров зерен снижается разность скоростей их падения и резко возрастает время, необходимое для их разделения.
Тяжелосредное обогащение крупного машинного класса (разделение по плотности на легкую и тяжелую фракции) производится в ванне колесного сепаратора, заполненной минеральной суспензией (рис. 2.1).

Рис. 2.1. Принципиальная схема тяжелосредного колесного сепаратора:
1 – загрузочная часть ванны; 2 – проточная часть ванны; 3 – разгрузочная часть ванны для легких фракций; 4 – разгрузочная часть ванны для тяжелых фракций; 5, 6 – подача вертикального и горизонтального потоков суспензии
Суспензия в колесный сепаратор поступает обычно двумя потоками – транспортным (горизонтальным) и восходящим (вертикальным).
Вероятностный подход к механизму разделения материала по плотности в тяжелосредных гравитационных сепараторах позволяет с достаточной полнотой раскрыть физическую сущность этого процесса.
Перемещение зерен обогащаемого материала происходит под действием: силы тяжести (веса зерна)

подъемной силы (архимедовой)

силы гидродинамического сопротивления среды
– при ламинарном движении (вязкостное сопротивление)

– при турбулентном движении (профильное сопротивление)

силы турбулентного давления

силы диффузного массопереноса

где d – размер частицы обогащаемого материала, м; δ ч, δ с – плотность зерна и среды (суспензии), кг/м 3; g – ускорение свободного падения, м/с 2; μ – динамическая вязкость среды, Па·с; ν‾ – усредненная скорость движения зерна, м/с; ψ – безразмерный коэффициент сопротивления, являющийся функцией критерия Re; ψ т– безразмерный коэффициент сопротивления, входящий в уравнение силы турбулентного давления; v ( t ) – мгновенная скорость движения зерна, м/с; ν‾ c, ν c. max, ν c. min– скорость потока суспензии, соответственно, усредненная, максимальная и минимальная, м/с; L – характерный размер вихря ( L = d max); K – коэффициент в уравнении турбулентной вязкости ( K ≈ 1); h max– максимальный размер стационарного вихря, м.
При перемещении зерна в среде, находящейся в покое или движущейся равномерно без ускорения, т. е. при отсутствии силы инерции F и=(πd 3δ с/6)[d(ν- ν c)dt] имеет место равенство разности сил тяжести и подъемной силы и сил гидродинамического сопротивления среды. В этом случае из уравнений (2.4) – (2.8) получают известные формулы конечной скорости свободного падения зерна:
Читать дальшеИнтервал:
Закладка: