Каниа Кан - Нейронные сети. Эволюция

Тут можно читать онлайн Каниа Кан - Нейронные сети. Эволюция - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Каниа Кан - Нейронные сети. Эволюция краткое содержание

Нейронные сети. Эволюция - описание и краткое содержание, автор Каниа Кан, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга предназначена для всех, кто хочет разобраться в том, как устроены нейронные сети. Для тех читателей, кто хочет сам научиться программировать нейронные сети, без использования специализированных библиотек машинного обучения. Книга предоставляет возможность с нуля разобраться в сути работы искусственных нейронов и нейронных сетей, математических идей, лежащих в их основе, где от вас не требуется никаких специальных знаний, не выходящих за пределы школьного курса в области математики.

Нейронные сети. Эволюция - читать онлайн бесплатно ознакомительный отрывок

Нейронные сети. Эволюция - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Каниа Кан
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Поэтому, при числе входов нейрона, больше одного, наши выработанные до этого правила линейной классификации, необходимо дополнить. Нужно использовать ошибку, чтобы математически связать все входы таким образом, при котором они начнут учитывать общие интересы. И как следствие, на выходе получить нужный классификатор.

Итак, мы постепенно подходим к ключевому понятию в обучении нейрона и нейронных сетей – обучение методом градиентного спуска.

Обновление весовых коэффициентов

Найдем решение, которое, даже будет не идеальным с точки зрения математики, но даст нам правильные результаты, поскольку всё же опирается на математический инструмент.

Для понимания всего процесса, давайте представим себе спуск с холма, со сложным рельефом. Вы спускаетесь по его склону, и вам нужно добраться до его подножья. Кругом кромешная тьма. У вас в руках есть фонарик, света которого едва хватает на пару метров. Все что вы сможете увидеть, в этом случае – по какому участку, в пределах видимости фонаря, проще всего начать спуск и сможете сделать только один небольшой шаг в этом направлении. Действуя подобным образом, вы будете медленно, шаг за шагом, продвигаться вниз.

У такого абстрактного подхода, есть математическая версия, которая называется – градиентным спуском. Где подножье холма – минимум ошибки, а шагами в его направлении – обновления весовых коэффициентов.

Градиентный спуск – метод нахождения локального минимума или максимума функции с помощью движения вдоль градиента– который, своим направлением указывает направление наибольшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой, а по величине (модулю) равный скорости роста этой величины в этом направлении.

Метод градиентного спуска позволяет находить минимум даже не располагая - фото 52

Метод градиентного спуска позволяет находить минимум, даже не располагая знаниями свойств этой функции, достаточными для нахождения минимума другими математическими методами. Если функция очень сложна, где нет простого способа нахождения минимума, мы в этом случае можем применить метод градиентного спуска. Этот метод может не дать нам абсолютно точного ответа. Но все же это лучше, чем вообще не иметь никакого решения. А его суть, как было описано выше – постепенно приближаться к ответу, шаг за шагом, тем самым медленно, но верно, улучшая нашу позицию.

Для наглядности, рассмотрим использование метода градиентного спуска на простейшем примере.

Возьмём график функции, которая своими значениями иллюстрирует склон. Если бы это была функция ошибки, то нам нужно найти такое значение ( х), которое минимизирует эту функцию:

Значение шага скорости обучения как мы говорили ранее играет тоже не малую - фото 53

Значение шага (скорости обучения), как мы говорили ранее, играет тоже не малую роль, при слишком большом значении, мы быстро спускаемся, но можем переступить минимум функции – страдает точность. При очень маленьком значении величины скорости обучения, нахождение минимума потребует гораздо больше времени. Нужно подобрать величину шага такой, чтоб он удовлетворяла нас и по скорости, и по точности. При нахождении минимума, наша точка будет коррелировать, возле значения минимум, в чуть большую и меньшую сторону на величину шага. Это все равно что – когда спустившись вплотную к подножью, мы сделали шаг и оказались чуть выше подножья, повернувшись сделали такой же шаг назад, и поняв, что опять находимся чуть выше, повторяли эти действия до бесконечности. Но при этом, мы все равно находились бы очень близко к подножью, потому как величина шага, в общем объеме, ничтожна, поэтому мы можем говорить – что находимся в самом низу.

Выходной сигнал нейрона представляет собой сложную функцию со многими входными - фото 54

Выходной сигнал нейрона представляет собой сложную функцию со многими входными данными, и соответствующие им – весовыми коэффициентами связи. Все они коллективно влияют на выходной сигнал. Как при этом подобрать подходящие значения весов используя метод градиентного спуска? Для начала, давайте правильно выберем функцию ошибки.

Функция выходного сигнала не является функцией ошибки. Но мы знаем, что есть связь между этими функциями, поскольку ошибка – это разность между целевыми тренировочными значениями и фактическими выходными значениями ( Е= Y - y).

Однако и здесь не все так гладко. Давайте взглянем на таблицу с тренировочными данными и выходными значениями для трех выходных узлов вместе с разными функциями ошибок:

Функция ошибки которой мы пользовались ранее целевое выход не совсем нам - фото 55

Функция ошибки, которой мы пользовались ранее ( целевоевыход), не совсем нам подходит, так как можно видеть, что если мы решим использовать сумму ошибок по всем узлам в качестве общего показателя того, насколько хорошо обучена сеть, то эта сумма равна нулю! Нулевая сумма означает отсутствие ошибки. Отсюда следует, что простая разность значений ( целевоевыход), не годится для использования в качестве меры величины ошибки.

Во втором варианте, в качестве меры ошибки используется квадрат разности: (( целевоевыход) ²). Этот вариант предпочтительней первого, поскольку, как видно из таблицы, сумма ошибок на выходе не дает нулевой вариант. Кроме того, такая функция имеет еще ряд преимуществ над первой, делает функцию ошибки непрерывно гладкой, исключая провалы и скачки, тем самым улучшая работу метода градиентного спуска. Еще одно преимущество заключается в том, что при приближении к минимуму градиент уменьшается, что уменьшает корреляцию через точку минимума.

Чтобы воспользоваться методом градиентного спуска, нам нужно применить метод дифференциального исчисления. Не пугайтесь, всё не так сложно, как может показаться.

Дифференциальное исчисление – это просто математически строгий подход к определению величины изменения одних величин при изменении других. Например, мы можем говорить о скорости изменения чего угодно, ускорения или любой другой физической величины, или математической функции.

Не изменяющиеся величина

Если мы представим автомобиль, движущийся с постоянной скоростью в 1,5 км/мин, то отвечая на вопрос, как меняется скорость автомобиля с течением времени, ответ утвердительный никак, ноль, так как его скорость постоянна:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Каниа Кан читать все книги автора по порядку

Каниа Кан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Нейронные сети. Эволюция отзывы


Отзывы читателей о книге Нейронные сети. Эволюция, автор: Каниа Кан. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x