Каниа Кан - Нейронные сети. Эволюция

Тут можно читать онлайн Каниа Кан - Нейронные сети. Эволюция - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Каниа Кан - Нейронные сети. Эволюция краткое содержание

Нейронные сети. Эволюция - описание и краткое содержание, автор Каниа Кан, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга предназначена для всех, кто хочет разобраться в том, как устроены нейронные сети. Для тех читателей, кто хочет сам научиться программировать нейронные сети, без использования специализированных библиотек машинного обучения. Книга предоставляет возможность с нуля разобраться в сути работы искусственных нейронов и нейронных сетей, математических идей, лежащих в их основе, где от вас не требуется никаких специальных знаний, не выходящих за пределы школьного курса в области математики.

Нейронные сети. Эволюция - читать онлайн бесплатно ознакомительный отрывок

Нейронные сети. Эволюция - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Каниа Кан
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Добавив на второй вход параметр ( b), отвечающий за точку прохождения прямой через ось Y, в качестве обучаемого коэффициента, мы получаем весь арсенал возможностей линейной функции ( y = Ax + b) при классификации.

Так как у параметра ( b), в линейной функции ( y = Ax 1+ b), нет произведения на значение переменной, то на второй вход, в качестве данных, всегда поступает единица ( x 2 = 1). Откуда на выходе получаем взвешенную сумму: y = Ax 1+ bx 2. При х2 = 1, на выходе получаем y = Ax 1+ b. И наконец, назвав коэффициенты, при входных данных – весовыми коэффициентами, изменили их обозначение – w 1 = А, а w 2 = b, в итоге: y = w 1 x 1+ w 2.

Но обучая наш нейрон, как в первом случае, на выходе мы не получим нужных ответов. Оказалось, всё дело в том, что второй вход, участвует в процессе обучения независимо от первого, и наоборот. Каждый тянет одеяло на себя. Оба входа, как бы мешают друг другу подстроить свои веса. Вследствие чего, при вычислении ошибки, получали непредсказуемый результат для подстройки обоих весовых коэффициентов. И было бы здорово, если бы с каждым последующим обучающим примером, мы смогли уменьшать функцию ошибки.

Для решения этой проблемы, нам пришлось ознакомится с методом градиентного спуска. В ходе рассмотрения этого метода, мы ознакомились с производными, узнали о правилах дифференцирования. В следствии чего, научились обновлять весовые коэффициенты, в сторону уменьшения ошибки по каждому из входов.

Суть метода – обновление весовых коэффициентов на своих входах, в зависимости от функции ошибки, таким образом, чтобы плавно двигаться в сторону её уменьшения. Другими словами, найти на каждом из входов, такое значение веса, чтоб ошибка на выходе, для всех этих весовых коэффициентов, была минимальной и как следствие удовлетворяла их всех.

Получив необходимые выражения, убедились, что изменений в математике функционирования искусственного нейрона, не так уж и много. Подобно биологической эволюции, наша тоже произошла постепенно. Ранее приобретённые навыки для классификации, лишь немногим усовершенствовались, а новые в свою очередь, выходят исходя из старых.

ГЛАВА 5

Больше входных данных

А что будет если добавить на вход искусственного нейрона, еще больше данных? Для начала, хотя бы еще один…

Проблемы линейной классификации

Допустим поступило новое задание, не совсем похожее на предыдущее. Теперь от нас хотят классифицировать виды животных, но уже с дополнительным параметром – возраст. Тестовая выборка дается уже по трем параметрам – ширина, высота, возраст. Первое что приходит в голову – объединить два параметра в одно. Если принять соотношение длины к высоте за один параметр, то мы можем смело действовать, как раньше:

Но проанализировав всё задание самостоятельно мы пришли к такому выводу Как - фото 97

Но проанализировав всё задание самостоятельно, мы пришли к такому выводу:

Как видим данные пересекаются И действительно природу как и всё что нас - фото 98

Как видим – данные пересекаются. И действительно, природу, как и всё что нас окружает, далеко не всегда можно классифицировать прямой. Даже один и тот же вид животных, может обитать в разных климатических зонах и условиях, что может сильно сказываться на параметрах его тела.

Что же делать? Ну для начала не будем паниковать и попробуем найти решение, пойдя по простому пути.

Логические функции

Рассмотрим, что будет на выходе нашего нейрона, добавив к нему еще один вход. Для этого, будем подавать на его вход данные логических функций.

Логическая функция принимает на вход два аргумента. Их значения, целевые значения, тоже известны. Логические функции могут принимать только дискретные аргументы (0 или 1).

Рассмотрим логическую функцию (И). Такая функция равна нулю для любого набора входных аргументов, кроме набора (х1 = 1, х2 = 1):

Функцию логического И для упрощения еще называют логическом - фото 99

Функцию логического (И), для упрощения, еще называют – логическом произведением. В самом деле:

х1 * х2 = 0 * 0 = 0

х1 * х2 = 1 * 0 = 0

х1 * х2 = 0 * 1 = 0

х1 * х2 = 1 * 1 = 1

Раз мы решили добавить еще один вход на наш нейрон, то как будет выглядеть функция выхода? Ну первое что приходит в голову, раз мы в первом случае суммировали, по аналогии с линейной функцией, два произведения входных данных и весовых коэффициентов ( y = w 1 x 1 + w 2), то почему бы не попробовать действовать подобным образом. Тогда представим линейный классификатор функцией – y = w 1 x 1 + w 2 x 2 + w 3. Ну и конечно же, эволюционируем наш нейрон, добавив еще одну “ногу” на вход:

Если присмотреться наш нейрон уже и в правду напоминает какой то простейший - фото 100

Если присмотреться, наш нейрон уже и в правду напоминает какой то, простейший живой организм.

Так как у нас всего четыре обучающие выборки, то давайте самостоятельно, без написания программы, проанализируем, что будет происходить на выходе и какие должны быть значение весовых коэффициентов:

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Каниа Кан читать все книги автора по порядку

Каниа Кан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Нейронные сети. Эволюция отзывы


Отзывы читателей о книге Нейронные сети. Эволюция, автор: Каниа Кан. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x