Норберт Винер - Кибернетика или управление и связь в животном и машине

Тут можно читать онлайн Норберт Винер - Кибернетика или управление и связь в животном и машине - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Норберт Винер - Кибернетика или управление и связь в животном и машине краткое содержание

Кибернетика или управление и связь в животном и машине - описание и краткое содержание, автор Норберт Винер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

«Кибернетика» — известная книга выдающегося американского математика Норберта Винера (1894—1964), сыгравшая большую роль в развитии современной науки и давшая имя одному из важнейших ее направлений. Настоящее русское издание является полным переводом второго американского издания, вышедшего в 1961 г. и содержащего важные дополнения к первому изданию 1948 г. Читатель также найдет в приложениях переводы некоторых статей и интервью Винера, включая последнее, данное им незадолго до смерти для журнала «Юнайтед Стэйтс Ньюс энд Уорлд Рипорт».

Книга, написанная своеобразным свободным стилем, затрагивает широкий круг проблем современной науки, от сферы наук технических до сферы наук социальных и гуманитарных. В центре — проблематика поведения и воспроизведения (естественного и искусственного) сложных управляющих и информационных систем в технике, живой природе и обществе. Автор глубоко озабочен судьбой науки и ученых в современном мире и резко осуждает использование научного могущества для эксплуатации и войны.

Книга предназначена для научных работников и инженеров.

Кибернетика или управление и связь в животном и машине - читать онлайн бесплатно полную версию (весь текст целиком)

Кибернетика или управление и связь в животном и машине - читать книгу онлайн бесплатно, автор Норберт Винер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

316 c128 Но это еще не все В предыдущей главе проводилась другая - фото 58 (3.16)

[c.128]

Но это еще не все. В предыдущей главе проводилась другая теорема эргодического характера, доказанная фон Нейманом: коль скоро некоторая система переходит в себя при данной группе сохраняющих меру преобразований, как в случае нашего уравнения (3.15), то, за исключением множества элементов нулевой вероятности, каждый элемент системы входит в подмножество (быть может, равное всему множеству), которое: 1) переходит в себя при тех же преобразованиях; 2) имеет меру, определенную на нем самом и также инвариантную при этих преобразованиях; 3) замечательно тем, что любая часть этого подмножества с мерой, сохраняемой данной группой преобразований, имеет либо максимальную меру всего подмножества, либо меру 0. Отбросив все элементы, не принадлежащие к такому подмножеству, и используя для него надлежащую меру, мы найдем, что временно́е среднее (3.16) почти во всех случаях равно среднему значению функционала Ф[ f ( t )] по всему пространству функций f ( t ), т. е. так называемому фазовому среднему. Стало быть, в случае такого ансамбля функции f ( t ), за исключением множества случаев нулевой вероятности, мы можем найти среднее значение любого статистического параметра ансамбля по записи любого временного ряда ансамбля, применяя временно́е среднее вместо фазового. Более того, этим путем можно найти одновременно любое счетное множество таких параметров ансамбля, и нам нужно знать лишь прошлое одного, почти какого угодно временного ряда ансамбля. Другими словами, если дана вся прошлая история — вплоть до настоящего момента — временного ряда, принадлежащего к ансамблю в статистическом равновесии, то мы можем вычислить с вероятной ошибкой, равной нулю, все множество статистических параметров ансамбля, к которому принадлежит ряд. До сих пор мы установили это для отдельного временного ряда, но сказанное справедливо также для многомерных временных рядов, где вместо одной изменяющейся величины мы имеем несколько одновременно изменяющихся величин.

Теперь мы можем рассмотреть различные задачи, относящиеся к временным рядам. Ограничимся случаями, в которых все прошлое временного ряда может быть задано счетным множеством величин. Например, для [c.129]довольно широкого класса функций f ( t ) (—∞ < t < ∞) функция f ( t ) полностью определена, если известно множество величин

Кибернетика или управление и связь в животном и машине - изображение 59,

( n =0, 1, 2, …) (3.17)

Пусть теперь А — некоторая функция от будущих значений t, т. е. от значений аргумента, больших нуля. Тогда мы можем определить совместное распределение величин ( a 0, a 1, …, а n , A ) из прошлого одного, почти любого временного ряда, если множество функций f берется в самом узком возможном смысле. В частности, если даны все a 0, …, а n , то мы можем найти распределение функции А. Здесь мы прибегаем к известной теореме Никодима об условных вероятностях. Та же теорема гарантирует нам, что это распределение при весьма общих условиях стремится к пределу, когда n →∞, и этот предел даст нам полные сведения относительно распределения любой будущей величины. Мы можем таким же образом определить по известному прошлому совместное распределение значений любого множества будущих величин или любого множества величин, зависящих от прошлого и от будущего. Если теперь нам дана некоторая подходящая интерпретация « наилучшего значения» статистического параметра или множества статистических параметров — например, в смысле математического ожидания, или медианы, или моды, — то мы можем вычислить это значение из известного распределения и получить предсказание, удовлетворяющее любому желательному критерию надежности предсказания. Мы можем численно оценить качество предсказания, применяя какой угодно статистический показатель качества: среднеквадратическую ошибку, максимальную ошибку, среднюю абсолютную ошибку и т. д. Мы можем вычислить количество информации о любом статистическом параметре или множестве статистических параметров, которое дает нам фиксация прошлого. Можно даже вычислить количество информации о всем будущем после определенного момента, даваемое нам знанием прошлого. Правда, если этот момент — настоящее, то, вообще говоря, мы будем знать о нем из прошлого, и наше знание настоящего будет содержать бесконечно много информации. [c.130]

Другой интересной проблемой является проблема многомерных временных рядов, в которых мы точно знаем лишь прошлое нескольких составляющих. Распределение величины, зависящей от более богатого прошлого, может изучаться методами, весьма близкими к уже рассмотренным. В частности, нам может понадобиться узнать распределение значений другой составляющей или множества значений других составляющих в некоторый момент прошлого, настоящего или будущего. К этому классу относится и общая задача о волновом фильтре. Даны сообщение и шум, скомбинированные некоторым образом в искаженное сообщение, прошлое которого нам известно. Нам известно также статистическое совместное распределение сообщения и шума как временных рядов. Мы ищем распределение значений сообщения в данный момент прошлого, настоящего или будущего. Затем мы разыскиваем оператор, который, будучи применен к прошлому искаженного сообщения, восстановит истинное сообщение наилучшим образом, в данном статистическом смысле. Мы можем также искать статистическую оценку какой-либо меры ошибок в нашем знании сообщения. Наконец, мы можем искать количество информации, которым располагаем в сообщении.

Особенно простым и важным является ансамбль временных рядов, связанный с броуновым движением. Броуновым движением называется движение частицы газа, толкаемой случайными ударами других частиц под действием теплового возбуждения. Теория его была разработана многими исследователями, в частности Эйнштейном, Смолуховским, Перреном и автором [142]. Если только мы не спускаемся по шкале времени до столь малых промежутков, что становятся различимыми отдельные удары частиц по данной частице, броуново движение обнаруживает любопытное явление недифференцируемости. Средний квадрат перемещения частицы в данном направлении за данный промежуток времени пропорционален длине этого промежутка, а перемещения за [c.131]последовательные промежутки времени совершенно не коррелируются между собой. Это вполне согласуется с физическими наблюдениями. Если мы нормируем шкалу броунова движения соответственно шкале времени и будем рассматривать только одну координату х , положив x ( t )=0 для t =0, то вероятность того, что при 0≤ t 1≤ t 2…≤ t n частицы находятся между хx 1+ dx 1в момент t 1, между х 2и x 2 +dx 2в момент t 2, …, между x n и x n + dх n в момент t n , равна

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Норберт Винер читать все книги автора по порядку

Норберт Винер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Кибернетика или управление и связь в животном и машине отзывы


Отзывы читателей о книге Кибернетика или управление и связь в животном и машине, автор: Норберт Винер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x