Норберт Винер - Кибернетика или управление и связь в животном и машине
- Название:Кибернетика или управление и связь в животном и машине
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Норберт Винер - Кибернетика или управление и связь в животном и машине краткое содержание
«Кибернетика» — известная книга выдающегося американского математика Норберта Винера (1894—1964), сыгравшая большую роль в развитии современной науки и давшая имя одному из важнейших ее направлений. Настоящее русское издание является полным переводом второго американского издания, вышедшего в 1961 г. и содержащего важные дополнения к первому изданию 1948 г. Читатель также найдет в приложениях переводы некоторых статей и интервью Винера, включая последнее, данное им незадолго до смерти для журнала «Юнайтед Стэйтс Ньюс энд Уорлд Рипорт».
Книга, написанная своеобразным свободным стилем, затрагивает широкий круг проблем современной науки, от сферы наук технических до сферы наук социальных и гуманитарных. В центре — проблематика поведения и воспроизведения (естественного и искусственного) сложных управляющих и информационных систем в технике, живой природе и обществе. Автор глубоко озабочен судьбой науки и ученых в современном мире и резко осуждает использование научного могущества для эксплуатации и войны.
Книга предназначена для научных работников и инженеров.
Кибернетика или управление и связь в животном и машине - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Кроме того, выше мы рассматривали простые временные ряды, в которых от времени зависит лишь одна числовая переменная. Существуют также многомерные временные ряды, где несколько таких переменных зависят все вместе от времени; именно многомерные ряды имеют наибольшее значение в экономических науках, метеорологии и т. п. Полная карта погоды Соединенных Штатов, составляемая ежедневно, есть такой временной ряд. В этом случае нам нужно одновременно выразить несколько функций через частоту, причем квадратические величины, такие, как выражение (3.35) или | k (ω)| 2в рассуждениях после формулы (3.70), заменяются множествами пар величин, т. е. матрицами . Задача определения функции k (ω) через | k (ω)| 2с выполнением некоторых добавочных условий в комплексной плоскости становится теперь гораздо труднее, особенно ввиду того, что умножение матриц не является перестановочной операцией. Тем не менее задачи, относящиеся к этой многомерной теории, были решены, по крайней мере частично, Крейном и автором.
Многомерная теория представляет собой усложнение предыдущей теории. Существует, кроме того, другая близкая теория, которая является ее упрощением. Эта теория предсказания, фильтрации и количества информации в дискретных временных рядах. Такой ряд [c.154]представляет собой последовательность функций f n (α) параметра α, где n пробегает все целочисленные значения от —∞ до ∞. Величина α, как и раньше, служит параметром распределения, и можно по-прежнему считать, что этот параметр изменяется равномерно в интервале (0, 1). Говорят, что временной ряд находится в статистическом равновесии, если замена n на n + v ( v — целое число) равносильна сохраняющему меру преобразованию в себя интервала (0, 1), пробегаемого параметром α.
Теория дискретных временных рядов во многих отношениях проще теории непрерывных рядов. Гораздо легче, например, свести их к последовательности независимых выборов. Каждый член (в случае перемешивания) можно представить как комбинацию предшествующих членов с некоторой величиной, не зависящей от всех предшествующих членов и равномерно распределенной в интервале (0, 1), и последовательность этих независимых коэффициентов взять вместо броунова движения, столь важного для непрерывных рядов.
Если f n (α) — временной ряд, находящийся в статистическом равновесии и метрически транзитивный, то его коэффициент автокорреляции будет равен
. (3.923)
и мы будем иметь
(3.924)
почти для всех α. Положим
, (3.925)
или
(3.926)
[c.155]
Пусть
, (3.927)
(3.928)
и
. (3.929)
Тогда при очень общих условиях k (ω) будет граничным значением на единичном круге для функции без нулей и особых точек внутри единичного круга; ω является здесь углом. Отсюда
(3.930)
Если теперь за наилучшее линейное предсказание функции f n (α) с опережением v принимается
, (3.931)
то
. (3.932)
Это выражение аналогично выражению (3.88). Заметим, что если положить
, (3.933)
то
(3.934)
[c.156]
Из нашего способа образования k (ω) видно, что для весьма широкого класса случаев мы вправе положить
. (3.935)
Тогда уравнение (3.934) принимает вид
. (3.936)
В частности, при v =1
, (3.937)
или
(3.938)
Таким образом, при предсказании на один шаг вперед наилучшим значением для f n +1(α) будет
; (3.939)
последовательным же предсказанием по шагам мы можем решить всю задачу линейного предсказания для дискретных временных рядов. Как и в непрерывном случае, это будет наилучшим возможным предсказанием относительно любых методов, если
. (3.940)
Переход от непрерывного случая к дискретному в задаче фильтрации совершается примерно таким же путем. Формула (3.913) для частотной характеристики наилучшего фильтра принимает вид
, (3.941)
где все члены имеют тот же смысл, что и в непрерывном случае, за исключением того, что все интегралы по ω и u [c.157]имеют пределы от —π до π, а не от —∞ до ∞ и вместо интегралов по t берутся дискретные суммы по v . Фильтры для дискретных временных рядов представляют собой обычно не столько физически осуществимые устройства для применения в электрической схеме, сколько математические процедуры, позволяющие статистикам получать наилучшие результаты со статистически несовершенными данными.
Наконец, скорость передачи информации дискретным временным рядом вида
, (3.942)
при наличии шума
, (3.943)
Интервал:
Закладка: