Владимир Живетин - Методы и средства обеспечения безопасности полета
- Название:Методы и средства обеспечения безопасности полета
- Автор:
- Жанр:
- Издательство:Изд-во Института проблем риска, Информационно-издательский центр «Бон Анца»
- Год:2010
- Город:Москва
- ISBN:978-5-98664-055-6, 978-5-903140-39-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Живетин - Методы и средства обеспечения безопасности полета краткое содержание
Методы и средства обеспечения безопасности полета - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Потери инвестора представляют собой превышение расходов над доходами за месяц, год или за весь период эксплуатации данного самолета или всех самолетов данной серии. Каждый из этапов жизненного цикла характеризуется определенными потерями, которые представляют собой этапный риск (рис. 1.12). Потери на каждом из этапов работ зависят от величин погрешностей δ i R , допущенных при проведении работ, а также от совокупности средств А i
, с использованием которых проводились работы. В итоге получаем суммарные потери Δ 4 R , которые можно представить в виде
Δ 4 R = ψ(δ 1 R , δ 2 R , δ 3 R, A 1, A 2, A 3),
где ψ – оператор преобразования.

Рис. 1.12
В заключение отметим суть проблемы рисков и безопасности полета. Задача исследователя – изучить истоки рисков и средств обеспечения безопасности. В историческом плане эта проблема эволюционировала от простого к сложному. Выделим ряд этапов эволюции.
Этап 1. Создание модели самолета и выбор таких конструктивных параметров, при которых его полет возможен.
Этап 2. Выбор параметров системы «самолет – пилот».
Этап 3. Выбор параметров и свойств системы «самолет – пилот – пилотажно-навигационное оборудование».
Этап 4. Выбор параметров и свойств системы «самолет – пилот – пилотажно-навигационное оборудование – СПКР (система предупреждения критических режимов)».
Этап 5. Выбор параметров и свойств системы «самолет – пилот – пилотажно-навигационное оборудование – СПКР – СОПР (система оптимизации режима пилотирования)».
Каждому этапу соответствовал свой уровень решения проблем: регулярность, безопасность, экономичность.
На этапе 1 решалась проблема безопасности. На этапе 2 решалась проблема безопасности и частично регулярности. На этапе 3 – задача безопасности, регулярности и частично экономичности. На этапе 4 резко увеличен показатель безопасности путем введения СПКР, а на этапе 5 резко увеличился показатель экономичности путем введения СОПР.
1.3. Математическая модель оценки эффективности функционирования микроавиационной системы
Уточним понятие микроавиационной системы, которую мы в дальнейшем, при экономическом анализе, будем именовать микроэкономической системой.
Самолет как физический объект начинает функционировать с того момента, когда он становится элементом макроэкономической системы, т. е. представляет собой микроэкономическую авиационную систему. Далее мы будем ее называть технико-экономической системой в силу свойств ее подсистем или просто системой.
Наша задача – разработать теоретические основы функционально-экономического анализа системы, включающей: самолет и техническо-организационные структуры, обеспечивающие реализацию услуг пассажирам (касса, система посадки и т. д.) и организацию полета (в том числе экипаж, аэродромное техническое обслуживание и т. д.).
В своей совокупности это есть система, которой присущи техническое обеспечение и экономическое обеспечение, включающее организацию финансовых потоков от пассажиров и оплату работы всех систем, обслуживающих полет самолета.
1.3.1. Требования к математической модели
Рассмотрим условие стабильности и эффективности функционирования такой микроэкономической системы как самолет.
Самолету как микроэкономической системе свойственно создавать несколько моделей финансовых потоков (переменных во времени).
I. Затратная модель финансовых потоков включает следующие затратные модели:
– НИР и ОКР создания новой модели самолета или модификации старой модели;
– производства;
– эксплуатации.
II. Модель поступления финансовых потоков в процессе эксплуатации, необходимая для анализа окупаемости, компенсации затратных финансовых потоков.
При этом модель финансовых потоков микроавиационной системы, представляющей самолет как экономический объект (рис. 1.13), включает два потока:
δ е – расходные потоки финансовых средств;
δ п – приходные потоки финансовых средств.
Вложение финансовых средств δ n ( t ), например, от инвестора происходит в момент времени t 0, равное стоимости самолета D g ( t 0). Будем полагать в общем случае, что готовый самолет у инвестора эксплуатирующая организация забирает в «кредит». Это означает, что организация обязуется средства инвестора в размере D g ( t 0) стоимости самолета возвратить с процентами в течение времени [ t 0, T ].
При этом эксплуатирующая организация не выкупает, а берет самолет в лизинг (кредит) под проценты, которые она выплачивает инвестору. Обозначим эти проценты П g ( t ).

Рис. 1.13
Кроме того, эксплуатирующая организация планирует получать на свое развитие соответствующие проценты. Обозначим эти проценты П 1.
Таким образом, социальная система [16] в лице пассажира оплачивает за полет сумму, которая включает:
– проценты по депозиту;
– проценты по кредиту;
– расходы по эксплуатации.
В итоге самолет как экономическая система, управляемая эксплуатационной организацией, создает финансовые потоки D как функции времени. Эти потоки зависят как от свойств самолета, так и эксплуатирующей организации. Поэтому в математической модели их необходимо рассматривать совместно во взаимном влиянии.
В дальнейшем будем различать самолет как физическую систему и самолет как микроэкономическую систему, включающую экипаж и другие организационно-управляющие системы.
Одним из условий выживаемости в процессе эксплуатации самолета является постоянная приспосабливаемость к непрерывным изменениям внешних условий функционирования. При построении математической модели будем иметь в виду следующее:
– микроэкономическая система (самолет) рассматривается как система, состоящая из взаимосвязанных частей [11];
– осуществляется учет влияния окружающей среды для достижения максимальной прибыли [12];
– управленческие решения принимаются на основе изучения и учета всей совокупности ситуационных факторов.
При этом важными являются ситуации, обусловленные конкретными эксплуатационными обстоятельствами, которые оказывают влияние на функционирование системы в данный момент времени. Важными для системы являются выделение и оценка роли наиболее значимых факторов прибыли и убытков, воздействуя на которые можно достичь поставленную цель.
Читать дальшеИнтервал:
Закладка: