Михаил Левицкий - Карнавал молекул. Химия необычная и забавная
- Название:Карнавал молекул. Химия необычная и забавная
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9101-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Левицкий - Карнавал молекул. Химия необычная и забавная краткое содержание
В книге рассказано о некоторых драматичных, а, порой, забавных поворотах судьбы как самих открытий, так и их авторов. Кроме того, читатель потренируется в решении занятных задач, что особенно приятно, когда рядом помещена подсказка, а потом и сам ответ.
В отличие от учебника в книге нет последовательного изложения основ химии, поэтому ее можно читать, начиная с любой главы.
Карнавал молекул. Химия необычная и забавная - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Показанные структуры заметно отличаются друг от друга, в некоторых присутствуют мостиковые лиганды, связывающие одновременно два атома металла. В роли связывающих групп выступают не только ионы (Br –или Cl –), но и алкоксигруппы R – O–. Общее у показанных молекул – двойная связь между атомами металлов.
Глядя на показанные выше структурные формулы, можно легко определить степень окисления металла в соединении, т. е. сколько электронов он отдал на образование связей. Для этого надо пересчитать количество валентных палочек, отходящих от атома, двойную связь, естественно, надо считать как две палочки (пунктирные координационные связи не учитываются). Таким образом, для всех показанных структур мы получим Re(VII), Nb(V), Ta(V), Mo(V), W(VI). Знание этого оказалось важным при получении последующих соединений.
Из уважения к органической химии, где двойная связь между атомами углерода давно была известна, такие соединения называли некоторое время этиленоподобными.
Тройная связь тоже возможна
Если углерод и азот образуют тройные связи, то, может быть, это возможно и для металлов? Предположение оказалось правильным, и вновь лидером стал рений, который в руках Коттона сумел опять удивить химиков (рис. 2.46).

Соединение весьма необычно тем, что в нем атомы рения имеют различную степень окисления – VII и IV. Удалось получить это соединение благодаря использованию координирующего лиганда – дитиогептана Me-S-(CH 2) 3-S-Me. Сейчас даже трудно предположить, что побудило автора к его использованию, по-видимому напряженный поиск плюс удача привели к очередной победе. Вслед за этим другие авторы получили «троесвязанные металлы» Mo, W, Os и др. Обычно так и бывает: если кому-то удается показать, что это возможно, то сразу оказывается, что подобное могут сделать и другие (рис. 2.47).
Как видим, единого способа получения таких соединений нет, каждый металл предпочитает свое индивидуальное окружение, поэтому синтез любого из них – это терпеливый поиск и экспериментальное мастерство. В соединении, содержащем осмий, находятся четыре лиганда – оксипиридина, расположенные наподобие четырехлопастной турбинки. Интересно, что эта турбинка может свободно вращаться вокруг оси Cl – Os≡Os – Cl как своеобразный нановентилятор.

Может быть, следует вновь отдать дань уважения органической химии и назвать такие соединения ацетиленоподобными? Такой термин не утвердился, возможно, потому, что это было не так важно: основные усилия были направлены на поиск новых, еще более неожиданных соединений.
Возможна ли четверная связь?
Возлагать надежды на углерод и азот не приходится, поскольку в соединениях с тройной связью использованы все имеющиеся у них s- и p- электроны и им сделать еще одну связь просто не из чего. Зато такая возможность есть у переходных металлов, которые отличаются от непереходных тем, что они дополнительно содержат неспаренные d- электроны. Читатель ожидает вновь увидеть слова «рений» и «Коттон». Так оно и есть! Коттону не пришлось даже подбирать хитроумные лиганды, необходимо было лишь правильно расшифровать структуру давно известной комплексной соли K 2Re 2Cl 8(рис. 2.48).

Были получены аналогичные соединения с другими катионами (Na +, Cs +) и различными анионами: сульфатными, изоцианатными, карбоксилатными и др. Группировку [Re 2Cl 8] 2–Коттон назвал классическим образцом четырехкратной связи, где атомы хлора расположены в вершинах мысленного куба. У этого аниона есть одно необычное свойство: атомы рения, оставаясь связанными между собой, могут повернуться и занять положение, перпендикулярное исходному, а атомы хлора, расположенные в вершинах куба, при этом остаются неподвижными (рис. 2.49).
Таким образом, два соединенных атома рения вращаются внутри кубической емкости, и все это несколько напоминает кувыркающуюся рыбку в аквариуме:

Среди других «четырехсвязных» примеров упомянем ацетаты хрома, молибдена и вольфрама, напоминающие строением осмиевый «нановентилятор», о котором говорилось выше (рис. 2.50).

В данном случае также не потребовалось затевать сложный синтез: это обычные, давно известные ацетаты металлов, просто раньше никто не мог предположить, что в них существует четырехсвязность; новое понимание пришло благодаря работам Коттона.
Интересно, что соединений с четырехсвязным фрагментом металл – металл получено гораздо больше, чем с двойной и тройной связью вместе взятых: например, молекул с четырехсвязными атомами Мо получено свыше 100. Природа как будто бы хочет нам показать, что ничего необычного в четырехсвязности нет, и это ей в какой-то степени удалось: сегодня такие соединения стали вполне привычными и никого не удивляют, однако химия всегда умеет порадовать сюрпризом.
Рекорд!
Получена пятикратная связь между двумя атомами металла, только на этот раз металл не рений и имя первооткрывателя иное. В 2005 г. американский химик Ф.П. Пауэр из Калифорнийского университета в г. Дэвисе (рис. 2.51) сообщил о синтезе молекулы, содержащей два пятикратно связанных хрома (рис. 2.52).

Согласитесь, что внешний вид такого солидного снопа из пяти валентных связей с непривычки режет глаз. Полученное соединение представляет собой темно-красное кристаллическое вещество, стабильное на воздухе, не разлагающееся до 200 °С, но не устойчивое к действию влаги. Окружающие объемистые группы введены для того, чтобы затруднить возможное взаимодействие соседних молекул и придать веществу стабильность. Наличие пятикратной связи доказано комплексом исследований: рентгеноструктурным анализом, спектральными исследованиями, квантовохимическими расчетами и магнитными измерениями, которые могут показать количество неспаренных электронов в молекуле. Поскольку таковых не оказалось, то, следовательно, все электроны атомов хрома участвуют в образовании связей.
Читать дальшеИнтервал:
Закладка: