Борис Штерн - Прорыв за край мира
- Название:Прорыв за край мира
- Автор:
- Жанр:
- Издательство:Троицкий вариант
- Год:2014
- Город:Москва
- ISBN:978-5-89513-345-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Штерн - Прорыв за край мира краткое содержание
Прорыв за край мира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
14. Великое объединение наук
Космология возникла как наука о самом гигантском: космос, галактики, миллиарды световых лет, миллиарды лет времени. Но уже более полувека назад она бы не смогла сдвинуться с места без ядерной физики: почему образовалось столько-то гелия и столько-то дейтерия; горячей родилась Вселенная или холодной; если горячей, то какова ее нынешняя температура? Все эти вопросы решались с таблицами данных по ядерной физике.
В первые мгновения своего существования Вселенная была настолько плотной и горячей, что состояла из частиц, которые сейчас в свободном виде в природе не существуют, — мы знаем об этих частицах только благодаря современной физике микромира, опирающейся на данные, добытые с помощью ускорителей частиц. И, наоборот, то, что мы наблюдаем в мощнейшие телескопы — оптические и микроволновые, — косвенным образом дает важнейшую информацию для физики микромира. Никакой теоретик по физике частиц не может безнаказанно ввести в теорию новую сущность: сразу надо проверять, не дает ли она каких-либо неприемлемых последствий в космологии, например, повлияв на уравнение состояния Вселенной в какой-то момент.
Таким образом, физика микромира и космология практически объединились. Впрочем, еще раньше так же объединились физика и астрономия в науку под названием «астрофизика». Это в корне противоречит расхожему мнению о том, что усложняющаяся наука требует всё более узких профессионалов, которые в пределе знают «всё ни о чем». Получается наоборот: наука требует людей со всё более широким кругозором. Разные ветви науки заимствуют друг у друга методы, а то и самих исследователей. Без подобной миграции наука захирела бы уже давно, и недаром во всевозможных научных грантах и программах всё чаще мелькает слово «мультидисциплинарность». К сожалению, оно часто используется не в самых благовидных целях, например, чтобы провести слабую диссертацию через непрофильный совет. Но так или иначе, главные прорывы в науке сейчас, как и раньше, делаются обычно людьми с широким кругозором.
Выше мы уже столкнулись с тем, что в космологии оказались затребованы ядерная физика и теория поля. По мере приближения к самому началу Вселенной требуется знание, связанное со всё более высокими энергиями частиц — температура растет до немыслимых величин. В какой-то момент (порядка долей наносекунды) энергии существующих ускорителей уже не хватает для воспроизведения взаимодействий частиц, которые тогда происходили. Для продвижения еще глубже не хватит энергии ускорителя, который принципиально может быть создан в условиях Земли. Звучали и продолжают звучать выказывания, что мир по этой причине непознаваем до конца. А продвижение всё происходит.
В следующих главах речь пойдет о процессах, воспроизведение которых выходит за пределы возможностей экспериментальной физики высоких энергий на много порядков величины. Одна из теорий, которая позволяет приблизиться совсем близко к Началу, где-нибудь на 10 -35с, называется теорией великого объединения. Речь здесь идет об объединении физических взаимодействий, а не наук. О ней более подробно расскажем ниже, а сейчас пару слов о еще более далеком пределе — совершенно недостижимом экспериментально, но явно просматривающимся теоретически.
15. Лестница масштабов и планковский потолок
«Быть может, эти электроны — миры, где пять материков…» — Валерий Брюсов написал это в 1920 году, когда уже закладывались основы квантовой механики, говорящей, что этого быть не может в принципе. Мир на разных масштабах не самоподобен — тут дело не только в квантовой механике: муха размером со слона не сможет не только летать, но и ползать -лапы не выдержат. Но квантовая механика меняет мир радикально: исчезает траектория частицы, исчезает однозначная причинно-следственная связь, исчезает полная детерминированность будущего настоящим. Ричард Фейнман высказался в том духе, что квантовую механику не понимает никто, но есть люди, которые хорошо умеют ей пользоваться и описывать с ее помощью явления природы.
Квантовая механика достаточно проста с математической точки зрения, пока она остается в рамках описания нерелятивистских частиц во внешнем потенциале. Но и в этих рамках она тяжела для интерпретации, порождая всякие курьезы типа кота Шрёдингера (суперпозиция живого и мертвого котов), многомировой интерпретации и сильного антропного принципа (чтобы вселенная реализовалась, в ней должен возникнуть наблюдатель).
Квантовая теория поля даже в рамках теории возмущений по зубам только профессионалам, хорошо владеющим нужным математическим аппаратом, за рамками метода возмущений уже непотребно сложна и не имеет точного конструктивного математического описания. Приходится вводить дискретное пространство-время (решетку), чтобы хоть написать конструктивные выражения.
И всё же в квантовой механике есть один очень простой принцип, позволяющий сразу оценивать масштаб квантовых явлений. Это принцип неопределенности Гейзенберга. Напомним:
Δ р Δ х ~ ћ /2
Δ E Δ t ~ ћ /2,
где Δр — неопределенность в импульсе частицы, Δ х — неопределенность в положении частицы, вторая строчка — аналогично для неопределенностей в энергии и времени, ћ — постоянная Планка. Это столь же фундаментальная постоянная, как и скорость света. К ним надо добавить еще гравитационную постоянную G . Если и есть что-то общее у разных вселенных, то, скорее всего, именно эта тройка констант. Конечно, общими не могут являться их конкретные численные значения — они есть результат нашего произвольного выбора единиц. Наоборот, эти константы задают естественную систему единиц, правда, не очень удобную для нас (см. ниже в этой главе). Общность скорее может заключаться в том, что процессы в разных вселенных имеют в этих естественных единицах одинаковое описание.
Из соотношения неопределенностей легко оценить, например, размер атома водорода R H не прибегая к решению квантомеханических уравнений: энергия связи электрона в атоме порядка Е = e 2/ R H , где е — заряд электрона. Кинетическая энергия связанного электрона должна быть порядка половины энергии связи — во всяком случае, такой принцип соблюдается в классической механике. От более глубокого падения электрона на протон страхует как раз принцип неопределенности: Δ р Δ х ~ √ Em е , R H~ ћ /2. Из этих условий находим, что R H= ћ 2/4 e 2/ m e = 0,13·10 -8см, что в четыре раза отличается от размера боровского радиуса (который, конечно, тоже весьма условно характеризует размер атома). Такую точность можно считать вполне удовлетворительной.
Читать дальшеИнтервал:
Закладка: