Вадим Романов - Прикладные аспекты аварийных выбросов в атмосферу
- Название:Прикладные аспекты аварийных выбросов в атмосферу
- Автор:
- Жанр:
- Издательство:Физматкнига
- Год:2006
- Город:Москва
- ISBN:978-5-89155-166-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Романов - Прикладные аспекты аварийных выбросов в атмосферу краткое содержание
Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.
Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.
Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.
Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.
Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.
Прикладные аспекты аварийных выбросов в атмосферу - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

индексы «1» и «2» относятся к параметрам в соответствующих сечениях; индекс «е» к характеристикам окружающей среды;

ρ,ρ е— плотность струи и наружного воздуха;
S m— площадь миделева сечения контрольного газового элемента.
Подставим в (3.34) вместо F Aего выражение и разделим обе части этого уравнения на Δl. Получим:

Выражение для площади нормально ориентированного к потоку миделева сечения элемента Δν (Рис. 3.7) S mx может быть записано в следующем виде:
S mx= 2R Δl • sin α + Δs (3.36)
где R — радиус струи; Δs — площадь нормальных потоку ветра миделевых поперечных сечений торцев элемента Аг за счет их наклона к вектору V e; α — угол наклона продольной оси газового объема Δν к горизонту.
Струя, истекающая в носящий ветровой поток реальной атмосферы под некоторым начальным углом, как правило, не достигает горизонтальной ориентации из-за деструктивного воздействия турбулентных молей. Текущие значения угла наклона струи ограничены некоторыми значениями α 0и α Р. При α = α Р, зависящем от турбулизации вещества струи и сносящего потока, начинается разрушение струйного течения; при α = π/ 2выражение для коэффициента С химеет особенность и математически неопределимо. Таким образом, область определения α находится в интервале
α Р≤ α ≤ π/ 2— α 0(3.37)
Приведенные оценки показывают, что и при выполнении соотношения (3.37)

Из этой формулы видно, что С хпропорционален ς и ρ, т. е. сопротивление струи увеличивается с турбулизацией окружающей среды и ростом плотности газа.
Получим среднее значение аэродинамического сопротивления струи в ветровом потоке как целого, для чего усредним (3.41) в диапазоне изменений угла α:


Рис. 3.7. Схема обтекания контрольного газообразного элемента струи
где

Знание V(a) из расчета динамики струи позволяет вычислить интеграл I 1и, подставляя его значение и значение I 2 в (3.42), получить осредненное значение коэффициента аэродинамического сопротивления.
3.6. Особенности атмосферного движения и распада выбросов
Наиболее типичными аварийными выбросами в атмосферу являются струйные и выбросы в виде компактных объемов — клубов. Струйные выбросы имеют протяженный характер; они доставляют загрязняющие примеси, возникающие в месте инцидента, непосредственно в зону разрушения потока и далее диффундируют в атмосфере из вторичного площадного источника.
Струи существуют при постоянной работе генерирующей установки, поэтому возникающие при их работе высотные площадные источники загрязнений являются стационарными.
В условиях штиля струи от пожара способны подняться на большие высоты и, не теряя динамической индивидуальности, преодолеть пограничный слой атмосферы. Разрушение мощного струйного потока и образование вторичного источника в этом случае могут начаться на высотах в несколько километров. Загрязнение воздуха в приземном слое при этом будет минимальным.
Выбросы в виде клубов или компактных облаков возникают при «мгновенном» или кратковременном действии генерирующего их источника. На открытом пространстве они участвуют в двух движениях: тепловом подъеме под действием сил плавучести и переносном движении под действием ветра в горизонтальной плоскости.
Интенсивное вовлечение воздуха в движущийся клуб приводит к резкому увеличению его размеров, росту силы аэродинамического сопротивления движению в потоке и замедлению скорости всплывания. На завершающем этапе своего существования движение клуба становится уже неразличимым на фоне внешнего пульсационного движения среды. Он разрывается и растаскивается атмосферными вихрями — таким образом начинается процесс рассеивания вещества выброса. Загрязняющая примесь под действием атмосферной дисперсии распространяется вдоль ветра и в поперечном ему направлении в соответствии с физическими характеристиками диффузии.
Квазиструйные выбросы (их еще называют [11] плавучими струями) являются геометрическими гибридами струй и клубов. Они возникают, когда струя еще не сформирована, а возникший в атмосфере объем уже не может считаться клубом из-за неоднородности макроскопических характеристик вещества в нем. Расчет физических характеристик таких образований и их движения в атмосфере представляет большие трудности и, как правило, обходится разработчиками и авторами книг рассмотрением предельных оценок.
Отметим, что независимо от типа выброса и его формы загрязняющий объем проходит две фазы развития. На первой фазе движения горячего выброса определяется сносящим ветровым потоком и собственной турбулентностью. Вовлечение в выброс происходит через подветренную его поверхность и пропорционально и относительной скорости траекторного движения.
Во второй фазе внутреннее турбулентное движение ослабевает, а доминирующим становится деструктивное воздействие вихрей атмосферы. Эти вихревые структуры определяют повышенный уровень вовлечения окружающего воздуха и увеличение размеров загрязняющего объема.
По специфике воздействия атмосферы на выбросы различают [132] три характерных случая: устойчивый, нейтральный и неустойчивый.
В случае устойчивой атмосферы поднимающийся выброс в зависимости от высотного градиента температуры окружающей среды может приближаться к равновесной высоте по траекториям 3-х типов (см. Рис. 3.8). При слабом градиенте γ еплотность выброса монотонно приближает к ρ е, не достигает этой величины.

Рис. 3.8. Теоретически возможные траектории выбросов при разных состояниях атмосферы: устойчивом — 1; нейтральном — 2; неустойчивом — 3; асимптотическая высота подъема — 4
При более резком уменьшении Т ес высотой выброс становится тяжелее окружающего воздуха, проскакивает по инерции уровень р = р еи возвращается на равновесный уровень по колебательной или монотонной траекториям (верхние траектории 1 на рисунке).
Читать дальшеИнтервал:
Закладка: