Вадим Романов - Прикладные аспекты аварийных выбросов в атмосферу
- Название:Прикладные аспекты аварийных выбросов в атмосферу
- Автор:
- Жанр:
- Издательство:Физматкнига
- Год:2006
- Город:Москва
- ISBN:978-5-89155-166-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Романов - Прикладные аспекты аварийных выбросов в атмосферу краткое содержание
Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.
Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.
Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.
Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.
Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.
Прикладные аспекты аварийных выбросов в атмосферу - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Поведение струи газа, истекающей в спокойную среду или спутный поток, изучалось в течение длительного времени, в результате чего были созданы разнообразные методы расчета газодинамических параметров струйных течений. Отличия в условиях истечения струй, а также в параметрах среды, в которых они реализуются, приводит к тому, что разработать единую математическую модель, охватывающую все встречающиеся на практике случаи, крайне затруднительно. Как правило, математические модели и инженерные методы расчета охватывают сравнительно узкие классы струйных течений, при этом в них широко используются эмпирические зависимости. Применение эмпирических соотношений позволяет получить хорошее согласие между расчетными и экспериментальными значениями, однако их обобщение на другие типы струйных течений затруднительно или вообще невозможно.
Наиболее многочисленную группу математических моделей и инженерных методов расчета составляют работы, связанные с осесимметричными газовыми струями в спокойной среде или спутном газовом потоке. Среди этих работ следует выделить монографии Г.Н. Абрамовича [91, 92], Вулиса А.С. [93, 94], Голубева В.А. [95], Шетца Дж. [97] и Гиневского А.С. [99].
Изучению затопленых струй посвящено большое количество работ [95–99]. Однако они, как правило, используют не всегда корректно полученные уравнения относительно одного или двух макроскопических параметров среды (например, массы примеси и (или) количества движения). Кроме того, их авторы в большинстве исследований ограничиваются рассмотрением течений в лабораторных условиях и не учитывают изменений макроскопических характеристик среды с высотой. Как показывает опыт, неучет реальных метеоусловий может привести к существенным ошибкам в вычислении динамических, тепловых и геометрических характеристик струи.
Целесообразно уравнения изменения основных характеристик установившегося струйного потока усреднять по его поперечному сечению с учетом уравнения статики атмосферы. При этом используется эйлеров подход рассмотрения поточных характеристик газа втекающего и вытекающего из газового объема, ограниченного контрольными сечениями, отстоящими на некотором расстоянии А/ друг от друга. Устремляя А/ к нулю, приходим к дифференциальным уравнениям, которые легко решаются при помощи ЭВМ [8, 73].
Задание равномерного по сечению струи распределения газодинамических характеристик позволяет, не теряя строгости рассмотрения, упростить задачу и свести ее к квазиодномерной. Турбулентное расширение газа струи учитывается интегрально введением понятия вовлечения окружающей среды. В результате такого рассмотрения получаются дифференциальные уравнения для определения скорости газа струи V, угла наклона оси струи к горизонту α, концентрации i — ой примеси С i, статической энтальпии единицы массы газа h.
Они имеют следующий вид:

Эти уравнения замыкаются соотношением для вовлечения Е [96]

уравнением статики атмосферы

связывающим статическое давление атмосферного воздуха Р ∞ с углом наклона α и продольной координатой l струйного течения, а также уравнением состояния газа
4.2. Клубы
Клубы являются одними из наиболее распространенных аварийных выбросов, возникающих при авариях взрывного характера. Клубом называется изолированный объем сплошной среды (газа или жидкости), сильно турбулизованной и имеющей характерные геометрические размеры (ширина, высота, длина) одного порядка. Из-за турбулентного характера движения среды внутри клуба его массовые, термодинамические и концентрационные характеристики могут считаться однородными по объему.
Для вывода уравнений, позволяющих получить газодинамические, геометрические и концентрационные характеристики клуба, движущегося в атмосфере, исходят из записи соотношений баланса массы, количества движения и энергии ограниченного объема в близкие моменты времени t 1и t 2[4, 33, 47, 73]. Уменьшая промежуток Δt = t 2— t 1, приходят к дифференциальным уравнениям для усреднённых по объему выброса величин: концентрации i-ой примеси, плотности газа, скорости центра масс выброса, температуры его вещества, а также для геометрических величин: угла наклона вектора скорости центра масс выброса к горизонту и его объема.
Например, уравнение баланса массы клуба записывается так:
М 2=М 1+М ∞, (4.8)
где М = р· ϑ — масса клуба; М ∞= Е S δΔt — вовлекаемая в клуб масса воздуха; р, ϑ — плотность газа выброса и его объем; S δ— боковая поверхность выброса (поверхность вовлечения); Е — вовлечение,

ς, — коэффициент вовлечения, определяемый из эксперимента; V, V ∞— скорость клуба и скорость ветра; α — угол наклона вектора скорости выброса к горизонту; индексы «1», «2», «∞» относятся к моментам времени «1», «2», и к условиям окружающей среды соответственно.
Размерность Е — кг/(м 2.с). Напомним, что овлечение — это масса газа окружающей выброс среды, вовлекаемая в него через единицу поверхности в единицу времени.
Из уравнения (4.8) следует, что масса выброса М 2в момент времени t 2складывается из массы выброса М 1в предыдущий момент времени t 1, а также вовлеченной массы М.
В конечноразностном виде (5.8) имеет следующий вид:

Следует отметить, что клуб в сносящем ветровом потоке совершает сложное движение. Вовлекаемая в выброс масса окружающего воздуха передает ему количество движения, архимедова выталкивающая сила приводит к его всплытию.
Для плоского движения выброса уравнения силового баланса вдоль осей z их записываются так:

После раскрытия дифференциалов в левых частях этих уравнений приходим к соотношениям относительно параметров V и а. Они записываются так:

Уравнение сохранения концентрации химически активной примеси выводится по аналогии с уравнением сохранения массы. Баланс массы / — ой примеси выброса записывается так:
Читать дальшеИнтервал:
Закладка: