Леонард Млодинов - Стивен Хокинг. О дружбе и физике
- Название:Стивен Хокинг. О дружбе и физике
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2020
- Город:Москва
- ISBN:978-5-17-123364-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Леонард Млодинов - Стивен Хокинг. О дружбе и физике краткое содержание
Стивен Хокинг. О дружбе и физике - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В основе замысла «Вселенной без границ» лежит на первый взгляд странная идея. Я уже рассказывал о том, что квантовая теория занимается крошечными объектами. Обычно она используется для изучения очень малых физических систем, таких как атом или молекула, элементарная частица или компактное скопление подобных объектов. Если эту теорию кто-то захочет применить к целой Вселенной, естественно, он будет думать, что границы ее приложимости будут исчерпываться ранней Вселенной, когда весь космос умещался внутри атома. Но у Стивена были более честолюбивые замыслы – он захотел рассмотреть Вселенную как замкнутую квантовую систему на протяжении всей ее истории, от микроскопических размеров в самом начале до современного вида в ее огромной протяженности. Для этого Стивен решил воспользоваться тем же методом, который впервые применил Фейнман в своих исследованиях по квантовой механике и который принес ему Нобелевскую премию в 1965 году.
По первоначальному замыслу, квантовые теории призваны описывать состояние физической системы с помощью некоего математического построения – волновой функции. Волновая функция включает всю информацию, известную о системе. Эта информация позволяет нам вычислять различные вероятности – например, вероятность того, что, проведя соответствующие измерения, мы обнаружим частицу в определенном месте в пространстве, с тем или иным импульсом или энергией. В лучшем случае, мы будем иметь дело с вероятностью; квантовая теория не гарантирует, в отличие от ньютоновских законов, что мы получим точный результат в результате измерений.
Но и это еще не все. Волновая функция – это не просто справочное руководство, описывающее систему в какой-то данный момент времени. Физические системы изменяются со временем, и волновая функция меняется соответственно: зная волновую функцию в данный момент времени, с помощью математического аппарата квантовой теории можно вычислить волновую функцию в любой другой момент. Это очень важный аспект квантовых теорий, потому что физиков обычно интересует такая проблема: пусть у нас есть система, находящаяся в «начальном состоянии»; какова вероятность того, что она окажется в том или ином «конечном состоянии» через некоторое время?
Схема, которую я описал, с большим успехом применялась для объяснения свойств атомов и состоящих из них химических элементов. Потом появились другие квантовые теории, квантовые теории поля, которые описывали взаимодействия между элементарными частицами. Например, поведение электрона, позитрона и фотона можно описать в теории поля, называемой квантовой электродинамикой. Однако оказалось, что процесс вычислений в квантовой электродинамике чрезвычайно сложен. И тут, нежданно-негаданно, в конце 1940-х годов Ричард Фейнман сформулировал новый подход к квантовой теории. Он совершенно отличался от прежнего метода, используемого в квантовой механике.
Фейнмана не волновали волновые функции. Чтобы определить, с какой вероятностью система [14] Под системой в квантовой механике понимается, например, элементарная частица или совокупность частиц. – Прим. пер.
окажется в том или ином конечном состоянии, Фейнман предложил рассматривать все возможные траектории или истории, по которым она может эволюционировать из начального в конечное состояние. Затем нужно сложить все вклады от каждой траектории (истории) по специальным правилам. Этот метод иногда называется фейнмановским суммированием по траекториям.
Для иллюстрации этой идеи предположим, что вы хотите вычислить вероятность того, что квантовая частица, начав свой путь в лаборатории в Калтехе, попадет через какое-то время в детектор, установленный в лаборатории на Луне. Согласно методу Фейнмана, нужно рассчитать все вклады от всех возможных траекторий, по которым могла бы пройти частица, направляясь из одной лаборатории в другую. По пути она могла бы, например, залететь за Юпитер и вернуться обратно или покружить несчетное число раз вокруг Земли. И даже такие траектории, которые нарушают законы физики, надо сложить: частица могла бы облететь всю Вселенную со сверхсветовой скоростью или даже очутиться в прошлом, путешествуя из начального в конечное состояние. Большинство траекторий с нашей точки зрения выглядит нереально. Фейнмановские правила однако гласят, что траектория по прямой линии вносит наибольший вклад, а «абсурдные» пути почти ничего не привносят в суммарный результат. И тем не менее, существует бесконечный набор таких путей, и от каждого из них что-то прибавится – не важно, будет это «что-то» маленьким или большим [15] Макроскопические тела, с которыми мы имеем дело в повседневном мире, являются совокупностью огромного количества молекул. Для таких тел вклады от большинства траекторий гасят друг друга и остается траектория, которая подчиняется законам Ньютона. Физики сказали бы, что происходит «декогеренция путем сопряжения до внутренних степеней свободы» (См.: Todd A. Brun and Leonard Mlodinow. Decoherence by coupling to internal vibrational modes. /Physical Review A 94, 2016).
.
Стивен, без сомнения, восторгался элегантными идеями Фейнмана. Но он и сам был такой же «белой вороной», как Фейнман – любил будоражить окружающих своими идеями, а потом прилагать все силы, чтобы убедить их в своей правоте. Когда Фейнман впервые рассказал о своем методе на конференции в 1948 году, он встретился с таким же непониманием и сопротивлением коллег, что и Стивен, впервые заявивший о своем излучении черных дыр. Такие выдающиеся физики, как Нильс Бор, Эдвард Теллер и Поль Дирак, заявили, что метод Фейнмана – полная ерунда.
Взгляды Фейнмана, конечно, были принципиально новыми; его теория на первый взгляд могла показаться даже скандальной. Никто не хотел всерьез думать о траекториях частиц, которые совершают зигзаги по всей Вселенной. Фейнман, как и Стивен, в своих математических выкладках «срезáл углы» и пренебрегал математической строгостью. Например, при суммировании по траекториям приходилось нарушать некоторые фундаментальные математические принципы, но Фейнмана это мало волновало. Как и Стивен, Фейнман предпочитал мыслить образами, а не уравнениями, и этот не знакомый для других физиков подход прибавлял им скептицизма, подливая масла в огонь. «Это было похоже на магию», – сказал как-то физик Фримен Дайсон.
Но Дайсон с коллегами в конце концов убедились, что методу Фейнмана можно дать строгое математическое обоснование и что – несмотря на то, что его теория рисует другую картину происходящего – ее предсказания относительно результата экспериментов всегда совпадают с теми, которые следуют из прежних формулировок квантовых теорий. Фейнман не предлагал новых законов в квантовой физике. То, что он предлагал, – это новый взгляд на квантовую физику, новый способ понимания квантовой Вселенной, который привел к новым невероятным предвидениям.
Читать дальшеИнтервал:
Закладка: