Ричард Фейнман - Том 1. Механика, излучение и теплота
- Название:Том 1. Механика, излучение и теплота
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание
Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таким образом, имеется несколько причин, по которым следует ожидать, что отклонение грузика на пружинке окажется пропорциональным cosω 0t и движение будет выглядеть так, как если бы мы следили за x-координатой частицы, движущейся по окружности с угловой скоростью ω 0. Проверить это можно, поставив опыт, чтобы показать, что движение грузика вверх-вниз на пружинке в точности соответствует движению точки по окружности. На фиг. 21.3 свет дуговой лампы проектирует на экран тени движущихся рядом воткнутой во вращающийся диск иголки и вертикально колеблющегося груза.
Фиг. 21.3. Демонстрация эквивалентности простого гармонического движения и равномерного движения по окружности.
Если вовремя и с нужного места заставить грузик колебаться, а потом осторожно подобрать скорость движения диска так, чтобы частоты их движений совпали, тени на экране будут точно следовать одна за другой. Вот еще способ убедиться в том, что, находя численное решение, мы почти вплотную подошли к косинусу.
Здесь можно подчеркнуть, что поскольку математика равномерного движения по окружности очень сходна с математикой колебательного движения вверх-вниз, то анализ колебательных движений очень упростится, если представить это движение как проекцию движения по окружности. Иначе говоря, мы можем дополнить уравнение (21.2), казалось бы, совершенно лишним уравнением для у и рассматривать оба уравнения совместно. Проделав это, мы сведем одномерные колебания к движению по окружности , что избавит нас от решения дифференциального уравнения. Можно сделать еще один трюк — ввести комплексные числа, но об этом в следующей главе.
§ 4. Начальные условия
Давайте выясним, какой смысл имеют А и В или а и Δ. Конечно, они показывают, как началось движение. Если движение начнется с малого отклонения, мы получим один тип колебаний; если слегка растянуть пружинку, а потом ударить по грузику — другой. Постоянные А и В или а и Δ, или какие-нибудь две другие постоянные определяются обстоятельствами, при которых началось движение, или, как обычно говорят, начальными условиями . Нужно научиться определять постоянные, исходя из начальных условий. Хотя для этого можно использовать любое из соотношений (21.6), лучше всего иметь дело с (21.6в). Пусть в начальный момент t=0 грузик смещен от положения равновесия на величину х 0и имеет скорость v 0. Это самая общая ситуация, какую только можно придумать. (Нельзя задать начального ускорения , потому что оно зависит от свойств пружины; мы можем распорядиться только величиной х 0.) Вычислим теперь А и В . Начнем с уравнения для
поскольку нам понадобится и скорость, продифференцируем х и получим
Эти выражения справедливы для всех t , но у нас есть дополнительные сведения о величинах х и v при t=0. Таким образом, если положить t=0, мы должны получить слева х 0и v 0, ибо это то, во что превращаются х и v при t=0. Кроме того, мы знаем, что косинус нуля равен единице, а синус нуля равен нулю. Следовательно,
и
Таким образом, в этом частном случае
Зная А и В , мы можем, если пожелаем, найти а и Δ.
Итак, задача о движении осциллятора решена, но есть одна интересная вещь, которую надо проверить. Надо выяснить, сохраняется ли энергия. Если нет сил трения, то энергия должна сохраняться. Сейчас нам удобно использовать формулы
и
Давайте найдем кинетическую энергию Т и потенциальную энергию U . Потенциальная энергия в произвольный момент времени равна 1/ 2 kx 2, где х — смещение, а k — постоянная упругости пружинки. Подставляя вместо х написанное выше выражение, найдем
Разумеется, потенциальная энергия зависит от времени; она всегда положительна, это тоже понятно: ведь потенциальная энергия — это энергия пружины, а она изменяется вместе с х . Кинетическая энергия равна 1/ 2 mv 2; используя выражение для v , получаем
Кинетическая энергия равна нулю при максимальном х, ибо в этом случае грузик останавливается; когда же грузик проходит положение равновесия (x=0), то кинетическая энергия достигает максимума, потому что именно тогда грузик движется быстрее всего. Изменение кинетической энергии, таким образом, противоположно изменению потенциальной энергии. Полная энергия должна быть постоянной. Действительно, если вспомнить, что k = m ω 2 0, то
Энергия зависит от квадрата амплитуды: если увеличить амплитуду колебания вдвое, то энергия возрастет вчетверо. Средняя потенциальная энергия равна половине максимальной и, следовательно, половине полной; средняя кинетическая энергия также равна половине полной энергии.
§ 5. Колебания под действием внешней силы
Нам остается рассмотреть колебания гармонического осциллятора под действием внешней силы. Движение в этом случае описывается уравнением
(21.8)
Давайте подумаем, как будет вести себя грузик при этих обстоятельствах. Внешняя движущая сила может зависеть от времени каким угодно образом. Начнем с простейшей зависимости. Предположим, что сила осциллирует
Читать дальшеИнтервал:
Закладка: