Ричард Фейнман - Том 1. Механика, излучение и теплота
- Название:Том 1. Механика, излучение и теплота
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание
Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Определив сложение, проделаем вот что: начнем с нуля и прибавим к нему b раз число а ; таким образом мы определим умножение целых чисел и будем называть результат произведением а на b .
Теперь можно проделать ряд последовательных умножений : если умножить единицу b раз на число а, то мы возведем а в степень b и запишем результат в виде а b . Исходя из этих определений, легко доказать такие соотношения
(22.1)
Эти результаты хорошо известны, мы не хотим долго на них останавливаться, а выписаны они больше для порядка. Конечно, 1 и 0 обладают особыми свойствами, например a +0= а, а ·1= а и а в первой степени равно а .
Составляя табличку формул (22.1), мы пользовались такими свойствами, как непрерывность и соотношение порядка; дать им определение очень трудно: для этого создана целая наука. Кроме того, мы выписали, конечно, слишком много «правил»; некоторые из этих правил можно вывести из других, но не будем на этом останавливаться.
§ 2. Обратные операции
Кроме прямых операций сложения, умножения и возведения в степень, существуют обратные операции. Их можно определить так. Предположим, что нам заданы а и с; как найти b, удовлетворяющее уравнениям a + b = с, ab = c, b a =с? Если a+b=с, то b определяется при помощи вычитания : b = с - а . Столь же проста операция деления : если ab = c , то b= с / а ; это решение уравнения ab = c «задом наперед». Если вам встретится степень: b a= с , то надо запомнить, что b называется корнем а-й степени из с . Например, на вопрос: «Какое число, будучи возведенным в куб, дает 8?» — следует отвечать: « Кубический корень из 8, т. е. 2». Обратите внимание, что, когда дело доходит до степени, появляются две обратные операции. Действительно, ведь раз а b и b а — различные числа, то можно задать и такой вопрос: «В какую степень надо возвести 2, чтобы получить 8?» В этом случае приходится брать логарифм . Если а b = с , то b=log ac. He надо пугаться громоздкой записи числа b в этом случае; находить его так же просто, как и результаты других обратных операций. Хотя логарифм «проходят» гораздо позже корня, это такая же простая вещь: просто-напросто это разного сорта решения алгебраических уравнений. Выпишем вместе прямые и обратные операции:
(22.2)
В чем же идея? Выписанные соотношения верны для целых чисел, потому что они выводятся из определений сложения, умножения и возведения в степень. Подумаем, нельзя ли расширить класс объектов, которые по - прежнему будут обозначаться буквами а, b и с и для которых по - прежнему будут верны все сформулированные нами правила , хотя сложение уже нельзя будет понимать как последовательное увеличение числа на единицу, а возведение в степень — как последовательное перемножение целых чисел.
§ 3. Шаг в сторону и обобщение
Если кто-нибудь, усвоив наши определения, приступит к решению алгебраических уравнений, он быстро натолкнется на неразрешимые задачи. Решите, например, уравнение b=3-5. Вам придется в соответствии с определением вычитания найти число, которое дает 3, если к нему добавить 5. Перебрав все целые положительные числа (а ведь в правилах говорится только о таких числах), вы скажете, что задача не решается. Однако можно сделать то, что потом станет системой, великой идеей: наткнувшись на неразрешимую задачу, надо сначала отойти в сторону, а затем обобщить . Пока алгебра состоит для нас из правил и целых чисел. Забудем о первоначальных определениях сложения и умножения, но сохраним правила (22.1) и (22.2) и предположим, что они верны вообще не только для целых положительных чисел (для них эти правила были выведены), а для более широкого класса чисел. Раньше мы записывали целые положительные числа в виде символов, чтобы вывести правила; теперь правила будут определять символы, а символы будут представителями каких-то более общих чисел. Манипулируя правилами, можно показать, что 3-5=0-2. Давайте определим новые числа: 0-1, 0-2, 0-3, 0-4 и т. д. и назовем их целыми отрицательными числами . После этого мы сможем решить все задачи на вычитание. Теперь вспомним и о других правилах, например a ( b + c )= ab + ac ; это даст нам правило умножения отрицательных чисел. Перебрав все правила, мы увидим, что они верны как для положительных, так и для отрицательных чисел.
Мы значительно расширили область действия наших правил, но достигли этого ценой изменения смысла символов.
Уже нельзя, например, сказать, что умножить 5 на -2 — значит сложить 5 минус два раза. Эта фраза бессмысленна. Тем не менее, пользуясь правилами, вы всегда получите верный результат.
Возведение в степень приносит новые хлопоты. Кто-нибудь обязательно захочет узнать, что означает символ а (3-5). Мы знаем, что 3-5 это решение уравнения (3-5)+5=3. Следовательно, мы знаем, что а (3-5) а 5= а 3. Теперь можно разделить на а 5, тогда а (3-5)= а 3/ а 5. Еще одно усилие, и вот окончательный результат: а (3-5)=1/ а 2. Таким образом, мы установили, что возведение числа в отрицательную степень сводится к делению единицы на число, возведенное в положительную степень. Все было бы хорошо, если бы 1/ а 2не было бессмысленным символом. Ведь а — это целое положительное или отрицательное число, значит, а 2больше единицы, а мы не умеем делить единицу на числа, большие чем единица!
Система так система. Натолкнувшись на неразрешимую задачу, надо расширить царство чисел. На этот раз нам трудно делить: нельзя найти целого числа ни положительного, ни отрицательного, которое появилось бы в результате деления 3 на 5. Так назовем это и другие подобные ему числа рациональными дробями и предположим, что дроби подчиняются тем же правилам, что и целые числа. Тогда мы сможем оперировать дробями так же хорошо, как и целыми числами.
Еще один пример на степень: что такое а 3/5? Мы знаем только, что ( 3/ 5)5=3, ибо это определение числа 3/ 5, и еще, что ( а 3/5) 5= a ( 3/5) 5, ибо это одно из правил. Вспомнив определение корня, мы получим а ( 3/5)= 5√ a 3. Определяя таким образом дроби, мы не вводим никакого произвола. Сами правила следят за тем, чтобы подстановка дробей вместо написанных нами символов не была бессмысленной процедурой. Замечательно, что эти правила справляются с дробями так же хорошо, как и с целыми числами (положительными и отрицательными)!
Читать дальшеИнтервал:
Закладка: