Ричард Фейнман - Том 1. Механика, излучение и теплота
- Название:Том 1. Механика, излучение и теплота
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание
Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Подсчитать импульс, передаваемый поршню за 1 сек , легко; мы сделаем это в два этапа: сначала определим импульс, переданный одним атомом при столкновении с поршнем, а потом умножим эту величину на число соударений атомов с поршнем за 1 сек . Сила и будет произведением этих двух величин.
Займемся теперь этими величинами: предположим сначала, что поршень — это идеальный «отражатель» атомов. Если это не так, то вся наша теория рухнет — поршень начнет нагреваться и произойдет много всяких событий, предсказать которые мы не в состоянии. Однако, когда снова установится равновесие, в результате окажется, что каждое столкновение будет эффективно упругим. В среднем энергия приходящих и уходящих частиц не изменяется. Таким образом, предположим, что газ находится в равновесии и поршень, будучи неподвижным, энергии не поглощает. В этом случае частица, подлетевшая к поршню с определенной скоростью, улетит от него с той же скоростью, причем масса частицы не изменится.
Если v есть скорость атома, а v x — составляющая скорости вдоль оси х , то импульс «к поршню» равен mv x , но раз частица «отражается», то импульс «от поршня» равен той же величине; значит, за одно соударение поршню сообщается импульс 2 mv x .
Нужно теперь подсчитать число соударений атома за 1 сек ; для этого можно взять любой промежуток времени dt , а потом разделить число соударений на dt . Много ли атомов попадает за это время в цель? Предположим, что в объеме V заключено N атомов, т. е. в каждом единичном объеме имеется n= N / V атомов. Теперь заметим, что за время t достигнут поршня не все частицы, движущиеся к поршню с заданной скоростью, а только те, которые оказались достаточно близко от него. Если частицы были очень далеко, то, хотя они и стремятся к поршню, к сроку они не успеют. Таким образом, за время t о поршень ударятся лишь те частицы, которые в начальный момент были не дальше чем на расстоянии v x t от него. Следовательно, число соударений за время t равно числу атомов, находящихся на расстоянии, не превышающем v x t , а поскольку площадь поршня равна А , то атомы, которые со временем попадут в цель, занимают объем Av x t. А число атомов, попавших в цель, равно произведению объема на число атомов в единичном объеме nv x At . Но нас, конечно, интересует не число соударений за время t , а мы хотим знать число соударений за 1 сек , поэтому мы делим на t и получаем nv x A . (Время t может быть взято очень малым, для красоты можно писать dt и затем дифференцировать, но это все одно и то же.)
Итак, мы нашли, что сила равна
(39.3)
Обратите внимание, что если фиксировать плотность частиц, то сила оказывается пропорциональной площади! После этого давление найти очень просто:
(39.4)
Теперь надо исправить кое-какие неточности: прежде всего не все молекулы имеют одну и ту же скорость и не все они движутся в одном направлении, так что нам приходится иметь дело с разными v 2 x ! Каждая молекула, ударяясь о поршень, вносит свой вклад, поэтому надо взять среднее по всем молекулам. Сделав это, мы получим
(39.5)
А не забыли ли мы множитель 2? Нет, потому что лишь половина атомов движется к поршню. Другие летят в противоположную сторону, а усредняя по v 2 x, мы усредняем как по положительным , так и по отрицательным составляющим v x . Если просто усреднить по v 2 x, получится вдвое больший результат. Среднее v 2 xдля положительных v x равно половине среднего v 2 xдля всех v x .
Но атомы прыгают в ящике как хотят, и поэтому ясно, что «x-направление» для них ничем не отличается от любого другого; они движутся куда угодно: вправо — влево, вверх — вниз, взад — вперед. Поэтому 2 x> (средний квадрат скорости движения в одном направлении) равен среднему квадрату скорости в любом другом направлении
(39.6)
Используем это обстоятельство для небольшого математического трюка и обнаружим, что каждый из членов в (39.6) равен их сумме, деленной на три, а сумма — это квадрат величины скорости:
(39.7)
Это очень хорошо, потому что теперь уже не надо заботиться о координатных осях, и формулу для давления можно записать в виде
(39.8)
Мы выделили множитель 2/2>, потому что это кинетическая энергия движения молекулы как целого. Итак, мы нашли
(39.9)
Если мы будем знать скорость молекул, то очень быстро подсчитаем давление.
В качестве простого примера можно описать такие газы, как гелий, пары ртути или калия при достаточно высокой температуре или аргон; это одноатомные газы, для которых можно считать, что их атомы не имеют внутренних степеней свободы. Если нам попадется сложная молекула, то в ней могут быть всевозможные внутренние движения, всякого рода колебания и т. д. Мы предполагаем, что можно не принимать их в расчет; но можно ли это делать — вопрос сложный и мы к нему вернемся; в действительности для нашего случая это окажется допустимым. Итак, предположим, что внутреннее движение атомов можно не рассматривать, и поэтому кинетическая энергия движения молекулы как целого восполняет всю энергию. Для одноатомного газа кинетическая энергия — действительно полная энергия. Будем обозначать полную энергию буквой U (иногда ее называют полной внутренней энергией, как-будто у газа может быть какая-то внешняя энергия), т. е. всю энергию всех молекул газа или любого другого объекта.
В случае одноатомного газа мы предположим, что полная энергия U равна произведению числа атомов на среднюю кинетическую энергию каждого из них, потому что мы пренебрегли возможным возбуждением атомов или какими-то внутриатомными движениями. Тогда
Читать дальшеИнтервал:
Закладка: