Ричард Фейнман - Том 1. Механика, излучение и теплота

Тут можно читать онлайн Ричард Фейнман - Том 1. Механика, излучение и теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 1. Механика, излучение и теплота
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание

Том 1. Механика, излучение и теплота - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Том 1. Механика, излучение и теплота - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Во-первых, хотя наш идеализированный храповик и предельно прост, но есть еще собачка, а при ней положено быть пружинке. Проскочив очередной зубец, собачка должна возвратиться в прежнее положение, так что без пружинки не обойтись.

Весьма существенно и другое свойство храповика и собачки (на рисунке его нельзя показать). Предположим, что части нашего устройства идеально упруги. Когда собачка пройдет через конец зубца и сработает пружинка, собачка ударится о колесико и начнет подпрыгивать. Если в это время произойдет очередная флуктуация, вертушка может повернуться и в другую сторону, так как зубец может проскользнуть под собачкой, когда та приподнята! Значит, для необратимости вертушки важно, чтобы было устройство, способное гасить прыжки собачки. Но при этом гашении энергия собачки перейдет к храповику и примет вид тепловой энергии. Выходит, что по мере вращения храповик будет все сильнее нагреваться. Для простоты пусть газ вокруг храповика уносит часть тепла. Во всяком случае, вместе с храповиком начнет нагреваться и сам газ. И что же, так будет продолжаться вечно? Нет! Собачка и храповик, сами обладая некоторой температурой Т , подвержены также и броуновскому движению. Это значит, что время от времени собачка случайно поднимается и проходит мимо зубца как раз в тот момент, когда броуновское движение вертушки пытается повернуть ее назад. И чем горячее предмет, тем чаще это бывает.

Вот отчего наш механизм не будет находиться в вечном движении. Иногда от щелчков по крыльям вертушки собачка поднимается и вертушка поворачивается. Но иногда, когда вертушка стремится повернуть назад, собачка оказывается уже приподнятой (из-за флуктуации движений этого конца оси) и храповик действительно поворачивает обратно. В итоге—чистый нуль. И совсем нетрудно показать, что, когда температура в обоих сосудах одинакова, в среднем вращения не будет. Будет, конечно, множество поворотов в ту или иную сторону, но чего мы хотим — одностороннего вращения,— тому не бывать.

Рассмотрим причину этого. Чтобы поднять собачку до верха зубца, надо проделать работу против натяжения пружинки. Назовем эту работу ε; пусть θ — угол между зубцами. Шанс, что система накопит достаточно энергии ε, чтобы поднять собачку до края зубца, есть ехр(-ε/ kT ). Но вероятность того, что собачка поднимется случайно, тоже есть ехр(-ε/ kT ). Значит, сколько раз собачка случайно поднимется, давая храповику свободно повернуться назад, столько же раз окажется достаточно энергии, чтобы при прижатой собачке вертушка повернулась вперед. Выйдет равновесие, а не вращение.

§ 2. Храповик как машина

Пойдем дальше. Рассмотрим другой пример: температура вертушки T 1, а температура храповика Т 2; T 2меньше Т 1. Т ак как храповик холодный и флуктуации собачки сравнительно редки, ей теперь очень трудно раздобыть энергию ε. Но из-за того, что вертушка горячая, она часто получает энергию ε, и наше устройство начнет, как и задумано, вертеться в одну сторону.

Посмотрим-ка, удастся ли нам теперь поднимать грузы. Привяжем к барабану нить и привесим к ней грузик вроде нашей блошки. Пусть L будет момент, создаваемый грузом. Если момент L не очень велик, наша машина груз поднимет, так как из-за броуновских флуктуации повороты в одну сторону вероятнее, чем в другую. Определим, какой вес мы сможем поднять, как быстро он будет подниматься и т. д.

Сперва рассмотрим движение вперед, для которого храповик и предназначен. Сколько энергии нужно занять у вертушки, чтобы продвинуться на шаг? Чтобы поднять собачку, нужна энергия ε. Чтобы повернуть храповик на угол θ против момента L, нужна энергия Lθ. Всего нужно занять энергию ε+Lθ. Вероятность заполучить ее равна ехр[-(ε+Lθ)/kT 1]. В действительности дело не только в самой этой энергии, но и в том, сколько, раз в секунду она окажется в нашем распоряжении. Вероятность в секунду только пропорциональна ехр[-(ε+Lθ)/kT 1]; обозначим коэффициент пропорциональности 1/τ (он в конце выкладок выпадет). После каждого шага вперед совершенная над грузом работа есть L θ. Энергия, взятая у вертушки, равна ε+Lθ. Энергией ε наматывается нить, затем следует: щелк, щелк, клингенкланггеклунген..., и энергия переходит в тепло. Вся одолженная энергия идет на то, чтобы поднять блошку и собачку, которая потом падает и отдает тепло другой стороне (храповику).

Рассмотрим теперь случай обратного вращения. Что происходит здесь? Чтобы храповик повернулся назад, надо лишь снабдить собачку такой энергией, чтоб ей хватило сил подняться и пропустить храповик. Эта энергия по-прежнему равна ε. Вероятность (в пересчете на секунду) того, что собачка поднимется на нужную высоту, теперь равна (1/τ)ехр(-ε/ kT 2). (Множитель пропорциональности тот же, но в показателе стоит kT 2из-за того, что температура иная.) Когда это случается, т. е. зубчатка проскальзывает назад, работа уже высвобождается (высвободился один зубец, а вместе с ним и работа Lθ). Энергия, взятая у системы храповик — собачка, есть ε, а энергия, переданная газу на другом конце оси при температуре T 1есть Lθ+ε. Это тоже легко понять. Положим, что собачка поднялась сама собой за счет флуктуации. Когда она упадет и пружинка ударит ее по зубцу, возникнет сила, стремящаяся повернуть зубчатку, ведь плоскость-то, о которую ударилась собачка, наклонная. Эта сила производит работу; то же можно сказать о весе грузика. Обе силы суммируются, и вся медленно высвобождаемая энергия появляется в виде тепла на той стороне, где вертушка. (Конечно, так и должно быть по закону сохранения энергии, но мы обязаны осторожно продумать все насквозь!)

Мы замечаем, что все эти энергии в точности те же, что и раньше, только переставлены. Итак, смотря по тому, какое из отношений больше, грузик либо медленно поднимается, либо медленно опускается. Конечно, на самом деле он непрерывно ходит туда-сюда, покачивается, но мы говорим об усредненном поведении.

Положим, что при определенном весе вероятности окажутся равными. Тогда привесим к нити бесконечно легкий грузик. Весь груз медленно пойдет вниз, и машина будет совершать работу, энергия будет откачиваться от храповика и пересылаться вертушке. Если же убрать часть груза, неравновесность перекинется на другую сторону. Груз поднимается, тепло отбирается от вертушки и поставляется шестерне. Мы попадаем в условия обратимого цикла Карно благодаря тому, что груз выбран как раз так, чтобы обе вероятности были равны. Это условие таково: (ε+Lθ)/T 1=ε/T 2. Пусть машина медленно тянет груз вверх.

Таблица 46.1 ОПЕРАТИВНАЯ СВОДКА ДЕЙСТВИЙ ХРАПОВИКА И СОБАЧКИ

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 1. Механика, излучение и теплота отзывы


Отзывы читателей о книге Том 1. Механика, излучение и теплота, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x