Ричард Фейнман - Том 1. Механика, излучение и теплота

Тут можно читать онлайн Ричард Фейнман - Том 1. Механика, излучение и теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 1. Механика, излучение и теплота
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание

Том 1. Механика, излучение и теплота - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Том 1. Механика, излучение и теплота - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как пример чего-то естественного выберем время, за какое свет проходит сквозь протон, 10 -24 сек . Разделив это число на возраст Вселенной (2·10 10лет≈10 18сек), получим 10 -42— число со столькими же нулями; потому и предлагают считать постоянную всемирного тяготения связанной с возрастом всего мира. Если бы это было так, то она изменялась бы со временем: по мере старения Вселенной отношение ее лет к промежутку, в течение которого свет проносится мимо протона, возрастало бы. Возможно ли, что постоянная тяготения и впрямь меняется с годами? Ясно, что изменения столь малы, что в этом убедиться нелегко.

Вот один из способов проверить эту мысль. Зададим вопрос: что при этом должно было измениться за последние 10 9лет (время появления жизни на Земле), т. е. за 1/ 10возраста Вселенной? За это время постоянная тяготения выросла бы на 10%. Оказывается, что если рассмотреть структуру Солнца — баланс между его массой и степенью генерации излучательной энергии внутри Солнца, — то при росте тяжести на 10% Солнце оказалось бы не на 10% ярче, а значительно больше: яркость его возросла бы как шестая степень постоянной тяготения! Можно подсчитать и то, на сколько при таком изменении тяжести Земля приблизится к Солнцу. В итоге выясняется, что Земля стала бы более чем на 100° горячее и, следовательно, вся вода из морей превратилась бы в пар. Поэтому мы сейчас не верим , что постоянная тяготения изменяется по мере того, как мир стареет. Все же приведенный нами аргумент не очень убедителен, и вопрос до конца не выяснен.

Как известно, сила тяготения пропорциональна массе, т. е. мере инерции тела, или мере того, насколько трудно удержать тело, вращающееся по кругу. Поэтому два тела, тяжелое и легкое, движущиеся бок о бок вокруг массивного тела по одному и тому же кругу с одной скоростью под действием тяготения, будут все время оставаться рядом, потому что движение по кругу требует для большего тела и большей силы. Иначе говоря, тяжесть у большей массы больше как раз в нужной пропорции , так что два тела будут вращаться, не удаляясь одно от другого. Если же одно тело находится внутри другого, то оно и останется там; равновесие является совершенным. Поэтому Гагарин и Титов наблюдали невесомость всех предметов внутри космического корабля; выпущенный из руки карандаш, например, вращался вокруг Земли по той же траектории, что и весь корабль, поэтому он замирал, повиснув в воздухе. Любопытно, что эта сила в точности пропорциональна массе; если бы это было не так, то должны были бы наблюдаться явления, в которых инерция и вес отличаются. Отсутствие подобных явлений было с огромной точностью проверено на опыте, выполненном впервые

Этвешем в 1909 г., а позже повторенном Дикке. У всех веществ масса и вес пропорциональны с точностью 1/1 000 000 000 или даже более того. Не правда ли, замечательный эксперимент?

§ 8. Тяготение и относительность

Заслуживает еще обсуждения видоизменение ньютонова закона тяготения, сделанное Эйнштейном. Оказывается, несмотря на вызванное им воодушевление, ньютонов закон тяготения все же неверен! Учтя требования теории относительности, Эйнштейн видоизменил этот закон. Согласно Ньютону, тяготение действовало мгновенно. Это значит вот что: сдвинув массу, мы должны в тот же миг почувствовать изменение силы в результате смещения; стало быть, таким способом можно посылать сигналы с бесконечной скоростью. А Эйнштейн выдвинул доводы, что невозможно посылать сигналы быстрее скорости света ; закон тяготения, таким образом, должен быть ошибочным. Если исправить его, учтя запаздывание, то получится уже новый закон, закон тяготения Эйнштейна. Одна из особенностей нового закона легко укладывается в голове: по теории относительности Эйнштейна все, любой объект, обладающий энергией, обладает и массой в том смысле, что он должен тяготеть к другим объектам. Даже световой луч имеет «массу», ибо он обладает энергией. И когда луч света, неся с собой энергию, проходит мимо Солнца, то Солнце его притягивает. И луч уже идет не по прямой, а искривляется. Например, во время солнечных затмений звезды, окружающие Солнце, кажутся сдвинутыми с того места, где они наблюдались бы, если бы Солнца не было. И это явление и впрямь наблюдалось.

И наконец, сопоставим тяготение с другими теориями. В последние годы выяснилось, что любая масса обязана своим происхождением мельчайшим частицам и что существует несколько видов взаимодействия, например ядерные силы и т. п. Ни одна из этих ядерных или электрических сил пока тяготения не объясняет. Квантовомеханические стороны природы мы еще пока не распространили на тяготение. Когда на малых расстояниях начинаются квантовые эффекты, то тяготение оказывается еще настолько слабым, что нужды в квантовой теории тяготения не возникает. С другой стороны, для последовательности наших физических теорий было бы важно понять, должен ли закон Ньютона с внесенным Эйнштейном видоизменением быть изменен и дальше с тем, чтобы согласовываться с принципом неопределенности. Это последнее видоизменение пока не сделано.

Глава 8 ДВИЖЕНИЕ

§ 1. Описание движения

Чтобы найти законы, управляющие различными изменениями, происходящими с течением времени, нужно сначала описать эти изменения и придумать какой-то способ их записи. Начнем с самого простого изменения, которое происходит с телом, — с изменения его положения в пространстве, т. е. то, что мы называем движением . Рассмотрим движущийся предмет, на который нанесена маленькая отметка; ее мы будем называть точкой. Неважно, будет ли это кончик радиатора автомобиля или центр падающего шара. Мы будем пытаться описать тот факт, что она движется и как это происходит.

На первый взгляд это кажется совсем просто, однако в описании изменения есть много хитростей. Некоторые изменения описать труднее, нежели движение точки на твердом предмете. Например, как описать движение облака, которое не только медленно перемещается, но вдобавок еще изменяет свои очертания или испаряется? Или как описать капризы женского ума? Впрочем, поскольку изменения облака хотя бы в принципе можно описать с помощью движения всех отдельных молекул его составляющих, то вполне возможно, что и изменения мыслей обусловлены тоже какими-то перемещениями атомов в мозгу, хотя мы еще не знаем простого способа их описания.

По этой причине мы начнем с движения точек. Пожалуй, еще можно считать эти точки атомами, но сначала, вероятно, лучше не гнаться за точностью, а просто представлять себе точку как какой-то маленький объект, маленький по сравнению с тем расстоянием, которое он проходит. Например, если говорят об автомобиле, прошедшем 100 км , то какая разница, имеется ли в виду его мотор или багажник. Конечно, небольшая разница есть, но обычно мы просто говорим «автомобиль», и то, что он не является абсолютной точкой, не имеет значения. Для наших целей не нужна абсолютная точность. Ради простоты забудем на время также и о том, что наш мир трехмерный, а сконцентрируем все свое внимание на движении в одном направлении (автомобиль движется по прямой дороге). Мы еще вернемся к понятию трех измерений, когда поймем, как описывается движение в одном измерении. Вы, вероятно, скажете, что это тривиально. Действительно, это так. Как описать движение в одном измерении, скажем движение автомобиля. Это проще простого. Приведу один из многих возможных способов. Чтобы определить положение автомобиля в различные моменты времени, мы измеряем расстояние его от начальной точки и записываем наши наблюдения. В табл. 8.1 буква s означает расстояние автомобиля от начальной точки в метрах, а t — время в минутах. Первая строка — нулевое расстояние и нулевой момент времени. Автомобиль еще не начал двигаться.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 1. Механика, излучение и теплота отзывы


Отзывы читателей о книге Том 1. Механика, излучение и теплота, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x