Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предполагаемый эффект выстраивания мы учитывали добавлением в выражение для энергии подходящего слагаемого, приговаривая, что если соседние электронные магнитики дают среднюю намагниченность М , то магнитный момент электрона имеет сильную тенденцию смотреть в том же самом направлении, что и средняя намагниченность соседних атомов. Таким образом, для двух возможных ориентации спинов можно написать [51] Вместо В мы записали это уравнение через H=B-M/ε 0 c 2 , чтобы согласовать со сказанным в предыдущей главе. Если вам больше нравится, можете написать U=±|μ|B a =±|μ|(В+λ'M/ε 0 с 2 ), где λ'=λ-1. Это одно и то же. :

371 Когда стало ясно что квантовая механика может объяснить нам огромные - фото 2173(37.1)

Когда стало ясно, что квантовая механика может объяснить нам огромные спин-ориентирующие силы, пусть даже с очевидно неправильным знаком, то было предложено, что ферромагнетизм возникает именно за счет этих сил, но что вследствие сложности железа и большого числа участвующих в игре электронов знак энергии электронов получается обратным. Как только это стало ясно, т. е. примерно с 1927 г., когда была понята квантовая механика, многие исследователи стали делать разные оценки, прикидки, полуподсчеты, стремясь получить теоретически величину λ. Но все равно наиболее поздние вычисления энергии взаимодействия между двумя электронными спинами в железе, предполагавшие прямое взаимодействие между двумя электронами в соседних атомах, дали неправильный знак . Сейчас, описывая это явление, говорят, что за все как-то ответственна сложность ситуации и что есть надежда, что кому-то, кто сумеет проделать вычисления для более сложного случая, удастся получить правильный ответ!

Полагают, что направленный вверх спин одного из электронов внутренней оболочки, который ответствен за магнетизм, стремится заставить спины электронов проводимости, витающих вокруг него, повернуться в противоположную сторону. Можно надеяться, что это ему вполне удастся, ибо электроны проводимости движутся в той же самой области, что и «магнитные» электроны. А поскольку они движутся то туда, то сюда, то могут передать свой приказ перевернуться «вверх ногами» спинам электронов других атомов; таким образом, «магнитный» электрон заставляет электрон проводимости направить спин в противоположную сторону, а тот в свою очередь заставляет следующий «магнитный» электрон направить свой спин противоположно его спину. Это двойное взаимодействие эквивалентно взаимодействию, стремящемуся выстроить два «магнитных» электрона в одном направлении. Иными словами, тенденция соседних спинов быть параллельными есть результат действия промежуточной среды, которая в некотором смысле стремится быть противоположной им обоим. Этот механизм не требует, чтобы все электроны проводимости были повернуты «вверх ногами». Достаточно, чтобы они лишь слегка стремились повернуться вниз, и шансы «магнитных» электронов повернуться вверх перевесят. Как полагают те исследователи, которые работали с этими вещами, это и есть тот механизм, который ответствен за ферромагнетизм. Но должен отметить, что вплоть до сегодняшнего дня никто не может вычислить величину λ материала, зная просто, что в периодической системе элементов этот материал стоит, скажем, под номером 26. Короче говоря, мы все еще не можем понять явление до конца.

Теперь же продолжим рассуждения о нашей теории, а потом вернемся снова назад и обсудим некоторые ошибки избранного нами пути. Если магнитный момент какого-то электрона направлен вверх, то его энергия частично обусловлена внешним полем, а частично связана с тенденцией спинов быть параллельными. Поскольку при параллельных спинах энергия меньше, то эффект получается таким же, как и от «внешнего эффективного поля». Но помните, что обязано это не истинным магнитным силам, а более сложному взаимодействию. Во всяком случае, в качестве выражений для энергии двух спиновых состояний «магнитного» электрона мы примем уравнения (37.1). Относительная вероятность этих двух состояний при температуре Т пропорциональна exp[-энергия/kT], что можно записать как е ± х , где х =|μ|(H+λM/ε 0с 2)/kT. Если затем мы вычислим среднюю величину магнитного момента, то найдем (как и в предыдущей главе), что она равна

372 Теперь я могу подсчитать внутреннюю энергию материала Отметим что - фото 2174(37.2)

Теперь я могу подсчитать внутреннюю энергию материала. Отметим, что энергия электрона в точности пропорциональна магнитному моменту, так что все равно, вычислять ли средний момент или среднюю энергию. Среднее значение энергии будет при этом

Но это не совсем верно Выражение λMε 0c 2представляет взаимодействие всех - фото 2175

Но это не совсем верно. Выражение λM/ε 0c 2представляет взаимодействие всех возможных пар атомов, а мы должны помнить, что каждую пару следует учитывать только один раз . (Когда мы учитываем энергию одного электрона в поле остальных, а затем энергию второго электрона в поле остальных, то мы еще раз учитываем часть первой энергии.) Поэтому выражение взаимодействия мы должны разделить на 2 и наша формула для энергии приобретет вид

373 В предыдущей главе мы обнаружили одну очень интересную особенность - фото 2176(37.3)

В предыдущей главе мы обнаружили одну очень интересную особенность: для каждого материала ниже определенной температуры существует такое решение уравнений, при котором магнитный момент не равен нулю даже в отсутствие внешнего намагничивающего поля. Если в уравнении (37.2) мы положим Н =0, то найдем

374 где М насNμ и T c μλM нас k ε 0 c 2 Решив это уравнение - фото 2177(37.4)

где М нас=N|μ| и T c =|μ|λM нас / k ε 0 c 2. Решив это уравнение (графически или каким-то другим способом), мы найдем, что отношение М / М нас как функция от T / T c представляет кривую, названную на фиг. 37.1 «квантовая теория».

Фиг 371 Зависимость спонтанной намагниченности Н0 ферромагнитных - фото 2178

Фиг. 37.1. Зависимость спонтанной намагниченности (Н=0) ферромагнитных кристаллов от температуры.

Пунктирная кривая «Кобальт, Никель» — это полученная экспериментально кривая для кристаллов этих элементов. Теория и эксперимент находятся в разумном согласии. Там же представлены результаты классической теории, в которой вычисления проводились в предположении, что атомные магнитики могут иметь всевозможные ориентации в пространстве.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x