Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг. 37.3. При перемагничивании железного бруска он приобретает некоторую угловую скорость.

Но поскольку момент количества движения должен сохраняться, то, когда все спины перевернулись, момент количества движения палочки должен измениться в противоположную сторону. Весь магнит должен начать вращаться. Это произошло на самом деле. Когда опыт был проделан, то было обнаружено слабое вращение магнита. Мы можем измерить полный момент количества движения, переданный всему магниту, который просто равен произведению N на h и на изменение момента количества движения каждого спина. Оказалось, что измеренное этим способом отношение момента количества движения к магнитному с 10%-ной точностью совпадает с нашими вычислениями. На самом деле в наших вычислениях мы исходили из того, что атомный магнетизм целиком обязан электронным спинам, однако в большинстве материалов есть еще и орбитальное движение. Орбитальное движение связано с решеткой, но она дает в магнетизм вклад не более нескольких процентов. Действительно, если взять M нас = N μ и для плотности железа взять значение 7,9, а для μ—момент электрона, связанный с его спином, то для магнитного поля получим насыщение около 20 000 гс . Однако опыт показывает, что на самом деле оно имеет значение вблизи 21500 гс . Ошибка в 5 или 10% возникает как раз из-за того, что мы пренебрегли вкладами орбитальных моментов. Таким образом, небольшое расхождение с гиромагнитными измерениями совершенно понятно.

§ 3. Петля гистерезиса

Из нашего теоретического анализа мы заключили, что магнитные материалы ниже некоторой температуры должны становиться спонтанно намагниченными, так что все магнитики в них должны смотреть в одном и том же направлении. Однако для обычного куска ненамагниченного железа это, как мы знаем, неверно. Почему железо не намагничивается все целиком? С помощью фиг. 37.4 я могу объяснить вам это. Допустим, что все железо было бы одним большим кристаллом такой формы, как показано на фиг. 37.4, а, и этот кристалл целиком намагнитился бы в одном направлении.

Фиг 374 Образование доменов в монокристалле железа При этом создалось бы - фото 2182

Фиг. 37.4. Образование доменов в монокристалле железа.

При этом создалось бы значительное внешнее магнитное поле, содержащее в себе огромную энергию. Мы можем уменьшить эту энергию поля, если расположим атомы так, чтобы одна часть кубика была намагничена вверх, а другая — вниз, как показано на фиг. 37.4, б . При этом, разумеется, поле вне железа будет занимать меньший объем и будет нести в себе меньше энергии.

Постойте, постойте! В слое между двумя областями рядом с электронами со спином, направленным вверх, сидят электроны со спином, направленным вниз. Но ферромагнетизм появляется только в тех материалах, для которых энергия уменьшается , когда спины параллельны , а не противоположны . Так что вдоль пунктирной линии на фиг. 37.4, б возникает некоторая добавочная энергия. Эта энергия иногда называется энергией стенки . Область, имеющая только одно направление намагниченности, называется доменом . На каждой единице площади разделяющей поверхности между двумя доменами у стенки домена, с противоположных сторон которой у нас расположены атомы, чьи магнитные моменты направлены противоположно, сосредоточена энергия. Конечно, нельзя говорить строго, что на границе моменты двух соседних атомов в точности противоположны, природа-то сделала этот переход более постепенным. Но сейчас нам не стоит интересоваться такими тонкими деталями.

Главный же вопрос теперь заключается вот в чем: выгодны такие стенки или нет? Ответ на него зависит от размеров доменов. Предположим, что мы увеличили размеры так, что все стало вдвое больше. При этом объем внешнего пространства, заполненного магнитным полем данной силы, станет в восемь раз больше, а энергия магнитного поля, которая пропорциональна объему, тоже возрастет в восемь раз. Но площадь границы между двумя доменами, на которой сосредоточена энергия стенки, возрастет только в четыре раза. Следовательно, если кусок железа достаточно велик, ему выгодно расщепиться на некое число доменов. Вот почему лишь очень маленькие кристаллы могут состоять только из одного домена. Любой большой объект, размер которого больше приблизительно одной тысячной миллиметра, будет иметь по крайней мере одну междоменную стенку, а обычный «сантиметровый» объект расщепляется, как это показано на рисунке, на множество доменов. Расщепление на домены будет происходить до тех пор, пока энергия, необходимая на установление еще одной дополнительной стенки, не сравняется с уменьшением энергии магнитного поля вне кристалла .

Природа же нашла еще один способ понижения энергии. Полю нет никакой необходимости выходить наружу [52] Вас может удивить, каким образом спины, которые должны быть направлены либо «вверх», либо «вниз», могут также быть направлены «вбок»! Это, конечно, правильно, но мне, право, не хотелось бы останавливаться на этом вопросе сейчас. Мы просто встанем на классическую точку зрения, представив себе атомные магнитики в виде магнитных диполей, которые могут быть ориентированы и в боковом направлении. Чтобы понять, как в квантовой механике можно в одно и то же время квантовать как «вверх—вниз», так и «направо — налево», требуется поднакопить больше знаний. , если, как это показано на фиг. 37.4, г, взять маленькие треугольные области с направленной в сторону намагниченностью. При таком расположении, как на фиг. 37.4, г, внешнее поле полностью отсутствует, а площадь доменных стенок лишь незначительно больше.

Но это приводит к новой проблеме. Оказывается, что если намагнитить отдельный кристалл железа, то он изменяет свою длину в направлении намагничивания; так что «идеальный» куб с намагниченностью «вверх» уже не будет безупречным кубом. Его «вертикальный» размер будет отличаться от «горизонтального».Этот эффект называется магнитострикцией . В результате таких геометрических изменений небольшой треугольный кусочек, показанный на фиг. 37.4, г , не сможет больше, так сказать, «умещаться» в отведенном ему пространстве: в одном направлении кристалл становится слишком длинным, а в другом — слишком коротким. Фактически-то он, конечно, умещается, но только немного сплющивается, что приводит к некоторым механическим напряжениям. Отсюда возникает и дополнительная энергия. Полный баланс вкладов в энергию и определяет сложный вид расположения доменов в куске ненамагниченного железа.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x