Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На фиг. 37.8 показано соответствующее поведение двух других ферромагнетиков: никеля и кобальта.

Фиг 378 Кривые намагничивания для монокристаллов железа никеля и кобальта - фото 2186

Фиг. 37.8. Кривые намагничивания для монокристаллов железа, никеля и кобальта.

Никель отличается от железа. Оказывается, что направлением легкого намагничивания у него будет направление [111]. Кобальт имеет гексагональную кристаллическую структуру; для этого случая система обозначений была изменена. Здесь в основании шестиугольника располагают три оси и еще одну ось, перпендикулярную к ним, так что здесь используется четыре числа. Направление [0001] — это направление гексагональной оси, а [1010]— направление, перпендикулярное к этой оси. Вы видите, что кристаллы различных металлов устроены по-разному.

Теперь мы рассмотрим такой поликристаллический материал, как обычный кусок железа. Внутри него содержится огромное множество маленьких кристалликов, кристаллические оси которых направлены во все стороны. Но это не то же самое, что домены . Вспомните, все домены были частью одного кристалла , а в куске железа, как видно из фиг. 37.9, содержится множество различных кристаллов с разной ориентацией.

Фиг 379 Микроструктура ненамагниченного поликристаллического ферромагнитного - фото 2187

Фиг. 37.9. Микроструктура ненамагниченного поликристаллического ферромагнитного материала. Каждый кристаллик имеет направление легкого намагничивания и разбивается на домены, которые обычно спонтанно намагничены в атом направлении.

В каждом из этих кристаллов, вообще говоря, содержится несколько доменов. Когда к куску поликристаллического материала мы прилагаем слабое магнитное поле, доменные барьеры в кристалликах начинают смещаться, и домены, направление намагниченности которых совпадает с направлением легкого намагничивания, растут все больше и больше. До тех пор пока поле остается очень малым, этот рост обратим; если мы выключим поле, намагниченность снова вернется к нулю. Этот участок кривой намагничивания обозначен на фиг. 37.10 буквой а .

Для больших полей в области, обозначенной буквой b, все становится гораздо более сложным. В каждом маленьком кристалле материала встречаются напряжения и дислокации, там есть примеси, грязь и дефекты. И при всех полях, за исключением лишь очень слабых, стенки доменов при своем движении наталкиваются на них. Между доменной стенкой и дислокацией (или границей зерна или примесью) возникают взаимодействия. В результате, когда стенка наталкивается на препятствие, она как бы приклеивается и держится там, пока поле не достигнет определенной величины. Затем, когда поле несколько подрастет, стенка внезапно срывается. Таким образом, движение доменной стенки оказывается отнюдь не плавным, как в идеальном кристалле: она движется скачкообразно, то и дело останавливаясь на мгновение. Если бы мы рассмотрели кривую намагничивания в микроскопическом масштабе, то увидели бы нечто подобное изображенному на вставке фиг. 37.10.

Но самое важное заключается в том, что эти прыжки намагничивания могут вызвать потерю энергии. Прежде всего, когда стенка домена проскакивает наконец через препятствие, она очень быстро движется к следующему. Быстрое движение влечет за собой и быстрое изменение магнитного поля, которое в свою очередь создает в кристалле вихревые токи. Последние растрачивают энергию на нагревание металла. Другой эффект состоит в том, что, когда домен неожиданно изменяется, часть кристаллов из-за магнитострикции изменяет свои размеры. Каждый неожиданный сдвиг доменной стенки создает небольшую звуковую волну, которая тоже уносит энергию. Благодаря таким эффектам эта часть кривой намагничивания необратима : происходит потеря энергии . В этом и заключается причина гистерезисного эффекта, ибо движение скачками вперед — одно, а движение назад — уже другое и в оба конца затрачивается энергия. Это похоже на езду по ухабистой дороге.

В конечном счете при достаточно сильных полях, когда все доменные стенки сдвинуты и намагниченность каждого кристаллика направлена по ближайшей к полю оси легкого намагничивания, остаются еще некоторые кристаллики, у которых ось легкого намагничивания далека от направления внешнего магнитного поля. Чтобы повернуть эти магнитные моменты, требуется еще дополнительное поле. Таким образом, в сильных полях именно в области, обозначенной на фиг. 37.10 буквой с, намагниченность возрастает медленно, но гладко.

Фиг 3710 Кривая намагничивания поликристаллического железа - фото 2188

Фиг. 37.10. Кривая намагничивания поликристаллического железа.

Намагниченность не сразу достигает своего насыщения, ибо в этой последней части кривой происходит доворачивание атомных магнитиков в сильном поле. Таким образом, мы видим, почему кривая намагничивания поликристаллического материала обычно имеет вид, изображенный на фиг. 37.10: сначала она немного возрастает и это возрастание обратимо , затем возрастает быстро, но уже необратимо, а потом медленно загибается. Разумеется, между этими тремя областями никакого резкого перехода нет— они плавно переходят одна в другую.

Нетрудно убедиться в том, что процесс намагничивания в средней части кривой носит скачкообразный характер, что доменные стенки при сдвиге прыгают и даже щелкают. Для этого нам нужна только катушка со многими тысячами витков провода, связанная через усилитель с громкоговорителем (фиг. 37.11).

Фиг 3711 Скачкообразные изменения намагниченности листков кремнистой стали - фото 2189

Фиг. 37.11. Скачкообразные изменения намагниченности листков кремнистой стали сопровождаются щелчками в громкоговорителе.

Если внутрь катушки поместить несколько листков кремнистой стали (такого же сорта, как и в трансформаторах) и медленно подносить к этой пачке постоянный магнит, то скачкообразные изменения намагниченности будут создавать в катушке импульсы э. д. с., которые в громкоговорителе будут слышны как отдельные щелчки. По мере приближения магнита к железу на вас обрушится целый град щелчков, напоминающий шум, создаваемый падающими друг на друга песчинками, высыпающимися из наклоненной жестянки. Это прыгают, покачиваются и щелкают доменные стенки по мере увеличения магнитного поля. Это явление называется эффектом Баркгаузена .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x