Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Когда мы от классической механики переходим к квантовой, то наши представления о важности тех или иных понятий во многом меняются. (Кое-какие из этих понятий мы уже рассматривали раньше.) В частности, постепенно сходит на нет понятие силы, а понятия энергии и импульса приобретают первостепенную важность. Вместо движения частиц, как вы помните, речь теперь идет уже об амплитудах вероятностей, которые меняются в пространстве и времени. В эти амплитуды входят длины волн, связанные с импульсами, и частоты, связываемые с энергиями. Импульсы и энергии определяют собой фазы волновых функций и по этой-то причине они важны для квантовой механики. Вместо силы речь теперь идет о том, каким образом взаимодействие меняет длину волны. Представление о силе становится уже второстепенным, если вообще о нем еще стоит говорить. Даже когда, к примеру, упоминают о ядерных силах, то на самом деле, как правило, работают все же с энергиями взаимодействия двух нуклонов, а не с силой их взаимодействия. Никому не приходит в голову дифференцировать энергию, чтобы посмотреть, какова сила. В этом параграфе мы хотим рассказать, как возникают в квантовой механике векторный и скалярный потенциалы. Оказывается, что именно из-за того, что в квантовой механике главную роль играют импульс и энергия, самый прямой путь введения в квантовое описание электромагнитных эффектов — сделать это с помощью Аи φ.

Надо сперва слегка напомнить, как действует квантовая механика. Мы снова вернемся к описанному в вып. 3, гл. 37, воображаемому опыту, в котором электроны испытывали дифракцию на двух щелях. На фиг. 15.5 показано то же устройство.

Фиг 155 Интерференционный опыт с электронами Электроны все они обладают - фото 866

Фиг. 15.5. Интерференционный опыт с электронами.

Электроны (все они обладают примерно одинаковой энергией) покидают источник и движутся к стенке с двумя узкими щелями. За стенкой находится «защитный» вал — поглотитель с подвижным детектором. Этот детектор предназначен для измерения частоты I, с которой электроны попадают в небольшой участок поглотителя на расстоянии х от оси симметрии. Частота эта пропорциональна вероятности того, что отдельный электрон, вылетевший из источника, достигнет этого участка «вала». Вероятность обладает распределением сложного вида (оно показано на рисунке), которое объясняется интерференцией двух амплитуд, по одной от каждой щели. Интерференция двух амплитуд зависит от их разности фаз. Иными словами, когда амплитуды равны С 1 е С 2 е 2, разность фаз δ=Ф 1-Ф 2определяет интерференционную картину [см. вып. 3, гл. 29, уравнение (29.12)]. Если расстояние от щелей до экрана равно L, а разность длин путей электронов, проходящих через две щели, равна а (как показано на фигуре), то разность фаз двух волн дается отношением

Том 2 Электромагнетизм и материя - изображение 867(15.27)

Как обычно, мы полагаем -λ=λ/2π, где λ — длина волны, отвечающая пространственному изменению амплитуды вероятности. Для простоты рассмотрим лишь те значения х , которые много меньше L ; тогда можно будет принять

Том 2 Электромагнетизм и материя - изображение 868и

Том 2 Электромагнетизм и материя - изображение 869(15.28)

Когда х равно нулю, то и δ равно нулю; волны находятся в фазе, а вероятность имеет максимум. Когда δ равно π, волны оказываются в противофазе, интерферируя деструктивно, и вероятность достигает минимума. Так электронная интенсивность получает волнообразный вид.

Теперь мы хотим сформулировать тот закон, которым в квантовой механике заменяется закон силы F=q v× B. Этот закон будет определять собой поведение квантовомеханических частиц в электромагнитном поле. Раз все происходящее определяется амплитудами, то закон должен будет объяснить, как сказывается на амплитудах влияние магнитного поля; с ускорениями же частиц мы больше никакого дела иметь не будем. Закон этот состоит в следующем: фазу, с какой амплитуда достигает детектора, двигаясь по какой-то траектории, присутствие магнитного поля меняет на величину, равную интегралу от векторного потенциала вдоль этой траектории, умноженному на отношение заряда частицы к постоянной Планка. То есть

Если бы магнитного поля не было то наблюдалась бы какаято определенная фаза - фото 870

Если бы магнитного поля не было, то наблюдалась бы какая-то определенная фаза прибытия. Если же где-то появляется магнитное поле, то фаза прибытия возрастает на величину интеграла в (15.29).

Хотя для наших теперешних рассуждений в этом нет необходимости, заметим все же, что влияние электростатического поля тоже выражается в изменении фазы, равном интегралу по времени от скалярного потенциала φ со знаком минус :

Эти два выражения справедливы лишь для статических полей но объединив их мы - фото 871

Эти два выражения справедливы лишь для статических полей, но, объединив их, мы получим правильный результат для любого, статического или динамического, электромагнитного поля. Именно этот закон и заменяет собой формулу F= q ( E+ v× B). Мы сейчас, однако, будем говорить только о статическом магнитном поле.

Положим, что опыт с двумя щелями проводится в магнитном поле. Мы хотим узнать, с какой фазой достигают экрана две волны, пути которых пролегают через две разные щели. Их интерференция определяет то место, где окажется максимум вероятности. Фазу волны, бегущей по траектории (1), мы назовем Ф 1, а через Ф 1( В =0) обозначим фазу, когда магнитного поля нет. Тогда после включения поля фаза достигает величины

1530 Аналогично фаза для траектории 2 равна 1531 Интерференция волн в - фото 872(15.30)

Аналогично, фаза для траектории (2) равна

1531 Интерференция волн в детекторе зависит от разности фаз 1532 - фото 873(15.31)

Интерференция волн в детекторе зависит от разности фаз

1532 Разность фаз в отсутствие поля мы обозначим δ В 0 это та самая - фото 874(15.32)

Разность фаз в отсутствие поля мы обозначим δ( В =0); это та самая разность, которую мы подсчитали в уравнении (15.28). Кроме того, мы замечаем, что из двух интегралов можно сделать один, идущий вперед по пути (1), а назад — по пути (2); этот замкнутый путь будет обозначаться (1—2). Так что получается

1533 Это уравнение сообщает нам как под действием магнитного поля - фото 875(15.33)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x