Ричард Фейнман - Том 3. Квантовая механика

Тут можно читать онлайн Ричард Фейнман - Том 3. Квантовая механика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 3. Квантовая механика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 3. Квантовая механика краткое содержание

Том 3. Квантовая механика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить

Том 3. Квантовая механика - читать онлайн бесплатно полную версию (весь текст целиком)

Том 3. Квантовая механика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Том 3 Квантовая механика - изображение 1125(16.18)

Иначе говоря, рассеянный свет полностью поляризован в x -направлении.

Здесь отметим интересную вещь. Формулы (16.17) и (16.18) точно соответствуют классической теории рассеяния света, которую мы излагали в гл. 32, § 5 (вып. 3), считая, что электрон связан с атомом линейной возвращающей силой, что действует он как классический осциллятор. Вы можете подумать: «А в классической теории все было куда проще; если она дает верный ответ, зачем забивать себе голову квантовой теорией?» Во-первых, мы пока рассмотрели только один частный (хотя и частый) случай атома с возбужденным состоянием j =1 и с основным состоянием j =0. Если бы возбужденное состояние имело спин, равный 2, вы бы получили уже иные результаты. Во-вторых, нет причины, почему бы модель электрона, привязанного к пружинке и приводимого в движение колеблющимся электрическим полем, должна была бы быть верна для одиночного фотона. Правда, мы обнаружили, что она все же верна и что интенсивность и поляризация оказываются какими надо. Так что в каком-то смысле мы в течение нашего курса лавировали где-то неподалеку от истины. В начале курса мы излагали теорию показателя преломления и рассеяния света, опираясь на классические представления. А теперь мы показали, что квантовая теория в самых обычных случаях приводит к тому же результату. Мы фактически только что объяснили такое, скажем, явление, как поляризация дневного света, с помощью квантовомеханических рассуждений, а это единственный по-настоящему законный путь.

Вообще все имеющие сегодня хождение классические теории должны быть в конечном счете подтверждены единственно правильными квантовыми аргументами. Естественно, что все те вещи, на объяснения которых мы потратили прежде столько времени, были отобраны как раз из тех частей классической физики, которые еще подтверждаются квантовой механикой. Заметьте, что мы не обсуждали во всех деталях такие модели атома, в которых электроны двигались вокруг ядра по орбитам. Это потому, что такая модель не дает результатов, согласуемых с квантовой механикой. Но электрон на пружинке (хоть эта картина ничуть не смахивает на настоящий атом) действительно с ней согласуется, и потому мы применяли эту модель в теории показателя преломления.

§ 3. Аннигиляция позитрония

Теперь хотелось бы рассмотреть еще один очень интересный пример. Он очень привлекателен, хотя и немного сложен, но, надеемся, все же не слишком. Пример этот — система, именуемая позитронием , т. е. «атом», составленный из электрона и позитрона,— связанное состояние ее -. Он походит на атом водорода, только вместо протона стоит позитрон. Как и у водорода, у него много состояний. И как у водорода, основное состояние вследствие взаимодействия с магнитным моментом расщепляется на «сверхтонкую структуру». Спины электрона и позитрона равны 1/ 2и могут быть либо параллельны, либо антипараллельны любой данной оси. (В основном состоянии орбитальное движение не создает своего момента количества движения.) Итак, всего есть четверка состояний: три из них — подсостояния системы со спином 1, все с одной энергией; и одно состояние со спином нуль и с иной, отличной энергией. Однако расщепление уровней здесь намного сильнее, чем те 1420 Мгц , которые есть в спектре водорода, потому что магнитный момент у позитрона куда больше протонного — в 1000 раз.

Но самое важное различие в том, что позитроний не может существовать вечно. Позитрон — это античастица электрона; они могут взаимно друг друга уничтожить. Две частицы полностью исчезают, обращая свою энергию покоя в излучение в виде γ-квантов (фотонов). Две частицы с конечной массой покоя переходят в пару (а то и больше) объектов с нулевой массой покоя [72] При нашем нынешнем глубоком понимании мира нелегко ответить на вопрос—менее ли «материальна» энергия фотона, чем энергия электрона, ведь, как вы помните, все частицы ведут себя очень похоже. Единственное различие в том, что у фотона масса покоя равна нулю. .

Начнем с анализа распада состояния позитрония со спином нуль. Он распадается на два γ-кванта со временем жизни 10 -10 сек . Вначале имеются позитрон и электрон с антипараллельными спинами, расположенные очень близко один к другому и образующие систему позитрония. После распада возникают два фотона, разлетающиеся с равными и противоположными импульсами (фиг. 16.5).

Фиг 165 Двухфотонная аннигиляция позитрония Импульсы обязаны быть равны - фото 1126

Фиг. 16.5. Двухфотонная аннигиляция позитрония.

Импульсы обязаны быть равны и противоположны, потому что полный импульс после распада должен быть таким, как и до распада, т. е. равен нулю (если мы рассматриваем аннигиляцию в покое). Если позитроний движется, мы можем нагнать его, решить задачу и затем все преобразовать обратно в лабораторную систему (вот видите — мы теперь все умеем; все, что надо, у нас под рукой).

Для начала заметим, что угловое распределение интереса не представляет. Раз спин начального состояния равен нулю, то нет какой-либо выделенной оси, оно симметрично относительно любых поворотов. Значит, и конечное состояние должно быть симметрично относительно всякого поворота. Это означает, что все углы распада одинаково вероятны — амплитуда вылететь в любую сторону для фотона одна и та же. Конечно, если один из фотонов отправляется в одну сторону, то другой отправится в противоположную.

Единственное, что нам остается, это рассмотреть поляризацию фотонов. Проведем ось +z по направлению движения одного фотона, а ось - z по направлению движения второго фотона. Для описания состояний поляризации фотонов можно использовать любые представления. Мы выберем правую и левую круговые поляризации, всегда отсчитывая их относительно направлений движения. Сразу же видно, что если движущийся вверх фотон — правый, то момент количества движения останется прежним, если фотон, отправившийся вниз, тоже окажется правым. Каждый унесет по +1 единице момента относительно направления своего импульса [73] Заметьте, что мы всегда анализируем момент количества движения относительно направления движения частицы. Если бы мы стали интересоваться моментом количества движения относительно других осей, нам пришлось бы учесть возможность «орбитального» момента количества движения — от члена p × r . Так, мы не вправе говорить, что фотоны вылетают прямо из центра позитрония. Они могли вылететь, как два комка с обода вертящегося колеса. О таких подробностях не приходится задумываться, если проводить ось вдоль направления движения. , что означает +1 и -1 относительно оси z . В сумме будет нуль, и момент количества движения после распада окажется таким же, как и до распада (фиг. 16.6).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 3. Квантовая механика отзывы


Отзывы читателей о книге Том 3. Квантовая механика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x