Ричард Фейнман - Том 3. Квантовая механика

Тут можно читать онлайн Ричард Фейнман - Том 3. Квантовая механика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 3. Квантовая механика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 3. Квантовая механика краткое содержание

Том 3. Квантовая механика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить

Том 3. Квантовая механика - читать онлайн бесплатно полную версию (весь текст целиком)

Том 3. Квантовая механика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Том 3 Квантовая механика - изображение 352

всегда можно написать

Получается уравнение связывающее скалярные произведения и справедливое для - фото 353

Получается уравнение, связывающее скалярные произведения и справедливое для любого вектора С. Но если оно верно для любого С, то едва ли имеет смысл вообще писать это С!

Теперь вернемся к (6.1). Это уравнение справедливо при любых χ. Значит, для сокращения письма мы должны просто убрать χ и написать вместо (6.1) уравнение (6.8). Это уравнение снабдит нас той же самой информацией, лишь бы мы понимали, что его всегда надлежит «завершить», «умножив слева на...», т. е. просто дописав некоторое <���χ| по обе стороны знака равенства. Следовательно, (6.8) означает в точности то же, что и (6.1), — ни более ни менее. Если вы предпочитаете числа, вы подставляете то <���χ|, которое вам нужно.

Может быть, вы в уравнении (6.8) уже нацелились и на φ? Раз (6.8) справедливо при любом φ, зачем же нам его держать? И действительно, Дирак предлагает абстрагироваться и от φ, так что остается только

69 Вот он каков великий закон квантовой механики Этот закон утверждает - фото 354(6.9)

Вот он каков — великий закон квантовой механики! Этот закон утверждает, что если вы вставите любые два состояния χ и φ с обеих сторон, слева и справа, то опять вернетесь к (6.1). Уравнение (6.9) вообще-то не очень полезно, но зато является неплохим напоминанием о том, что уравнение выполняется для любых двух состояний.

§ 2. Разложение векторов состояний

Посмотрим на уравнение (6.8) еще раз; его можно рассматривать следующим образом. Любой вектор состояния |φ> может быть представлен в виде линейной комбинации совокупности базисных «векторов» с подходящими коэффициентами, или, если угодно, в виде суперпозиции «единичных векторов» в подходящих пропорциях. Чтобы подчеркнуть, что коэффициенты < i |φ> — это просто обычные (комплексные) числа, напишем

Том 3 Квантовая механика - изображение 355

Тогда (6.8) совпадает с

610 Такое же уравнение можно написать и для всякого другого вектора - фото 356(6.10)

Такое же уравнение можно написать и для всякого другого вектора состояния, скажем для |χ>, но, конечно, с другими коэффициентами, скажем с D i . Тогда будем иметь

611 где D i это просто амплитуды i χ Представим что мы начали бы - фото 357(6.11)

где D i — это просто амплитуды < i |χ>.

Представим, что мы начали бы с того, что в (6.1) абстрагировались бы от φ. Тогда мы бы имели

612 Вспоминая что i χ можно записать это в виде 613 А - фото 358(6.12)

Вспоминая, что <���χ| i >=< i |χ>*, можно записать это в виде

613 А теперь интересно вот что чтобы обратно получить можно просто - фото 359(6.13)

А теперь интересно вот что: чтобы обратно получить <���χ|φ>, можно просто перемножить (6.13) и (6.10). Только, делая это, надо быть внимательным к индексам суммирования, потому что они в разных уравнениях разные. Перепишем сперва (6.13):

Это ничего не меняет Объединяя с 610 получаем 614 Вспомните - фото 360

Это ничего не меняет. Объединяя с (6.10), получаем

614 Вспомните однако что i δ ij так что в сумме останутся только - фото 361(6.14)

Вспомните, однако, что i >=δ ij, так что в сумме останутся только члены с j = i . Выйдет

615 где как вы помните D i i χ а C i Опять мы являемся - фото 362(6.15)

где, как вы помните, D i *=< i |χ>*=<���χ| i >, а C i =. Опять мы являемся свидетелями тесной аналогии со скалярным произведением

Единственная разница что D i нужно комплексно сопрягать Значит 615 - фото 363

Единственная разница — что D i нужно комплексно сопрягать. Значит, (6.15) утверждает, что если разложить векторы состояний <���χ| и |φ> по базисным векторам < i | или | i >, то амплитуда перехода из φ в χ дается своего рода скалярным произведением (6.15). А это просто (6.1), записанное в других символах. Мы ходим по кругу, привыкая к новым символам.

Может быть, стоит подчеркнуть, что в то время, как пространственные трехмерные векторы выражаются через три ортогональных единичных вектора, базисные векторы | i > квантовомеханических состояний должны пробегать всю совокупность, отвечающую данной задаче. В зависимости от положения вещей в нее может входить два или три, пять или бесконечно много базисных состояний.

Мы говорили также о том, что происходит, когда частицы проходят через прибор. Если мы выпустим частицы в определенном состоянии φ, затем проведем их через прибор, а после проделаем измерение, чтобы посмотреть, находятся ли они в состоянии χ, то результат будет описываться амплитудой

Том 3 Квантовая механика - изображение 364(6.16)

Такой символ не имеет близкого аналога в векторной алгебре. (Он ближе к тензорной алгебре, но эта аналогия не так уж полезна.) Мы видели в гл. 3 [формула (3.32)], что (6.16) можно переписать так:

617 Это пример двукратного применения основного правила 69 Мы - фото 365(6.17)

Это пример двукратного применения основного правила (6.9).

Мы обнаружили также, что если вслед за прибором А по ставить другой прибор B, то можно написать

618 Это опятьтаки следует прямо из предложенного Дираком метода записи - фото 366(6.18)

Это опять-таки следует прямо из предложенного Дираком метода записи уравнения (6.9). Вспомните, что между В и A всегда можно поставить черту (|), которая ведет себя совсем как множитель единица.

Кстати говоря, об уравнении (6.17) можно рассуждать и иначе. Предположим, что мы рассуждаем о частице, попадающей в прибор А в состоянии φ и выходящей из него в состоянии ψ. Мы можем задать себе такой вопрос: можно ли найти такое состояние ψ, чтобы амплитуда перехода от ψ к χ тождественно совпадала с амплитудой <���χ| A |φ>? Ответ гласит: да. Мы хотим, чтобы (6.17) заменилось уравнением

619 Конечно этого можно достичь если взять 620 что и определяет - фото 367(6.19)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 3. Квантовая механика отзывы


Отзывы читателей о книге Том 3. Квантовая механика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x