Ричард Фейнман - Том 3. Квантовая механика

Тут можно читать онлайн Ричард Фейнман - Том 3. Квантовая механика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 3. Квантовая механика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 3. Квантовая механика краткое содержание

Том 3. Квантовая механика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить

Том 3. Квантовая механика - читать онлайн бесплатно полную версию (весь текст целиком)

Том 3. Квантовая механика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

743 Получилась довольно простая пара уравнений и пока еще точная - фото 489(7.43)

Получилась довольно простая пара уравнений — и пока еще точная. Производная от одной переменной есть функция от времени μ ( t ) exp ( i ω 0 t ), умноженная на вторую переменную; производная от второй — такая же функция от времени, умноженная на первую. Хотя эти простые уравнения в общем не решаются, но в некоторых частных случаях мы решим их.

Нас, по крайней мере сейчас, интересует только случай колеблющегося электрического поля. Взяв ℰ( t ) в форме (7.37), мы увидим, что уравнения для γ I и γ II обратятся в

744 И вот если ℰ 0достаточно мало то скорости изменения γ I и γ II тоже - фото 490(7.44)

И вот если ℰ 0достаточно мало, то скорости изменения γ I и γ II тоже будут малы. Обе γ не будут сильно меняться с t , особенно в сравнении с быстрыми вариациями, вызываемыми экспоненциальными членами. У этих экспоненциальных членов есть вещественные и мнимые части, которые колеблются с частотой ω+ω 0или ω-ω 0. Члены с частотой ω+ω 0колеблются вокруг среднего значения (нуля) очень быстро и поэтому не дадут сильного вклада в скорость изменения γ. Значит, можно сделать весьма разумное приближение, заменив эти члены их средним значением, т. е. нулем. Их просто убирают и в качестве приближения берут

745 Но даже и оставшиеся члены с показателями пропорциональными ωω 0 - фото 491(7.45)

Но даже и оставшиеся члены с показателями, пропорциональными (ω-ω 0), меняются быстро, если только ω не близко к ω 0. Только тогда правая сторона будет меняться достаточно медленно для того, чтобы набежало большое число, пока интегрируешь эти уравнения по t . Иными словами, при слабом электрическом поле изо всех частот представляют важность лишь те, которые близки к ω 0.

При тех приближениях, которые были сделаны для того, чтобы получить (7.45), эти уравнения можно решить и точно; но работа эта все же трудоемкая, и мы отложим ее на другое время, когда обратимся к другой задаче того же типа. Пока же мы их просто решим приближенно, или, лучше сказать, найдем точное решение для случая идеального резонанса ω=ω 0и приближенное — для частот близ резонанса.

§ 4. Переходы при резонансе

Первым рассмотрим случай идеального резонанса. Если положить ω=ω 0, то экспоненты в обоих уравнениях (7.45) станут равными единице, и мы просто получим

746 Если из этих уравнений исключить сперва γ I а потом γ II то мы - фото 492(7.46)

Если из этих уравнений исключить сперва γ I , а потом γ II , то мы увидим, что каждое из них удовлетворяет дифференциальному уравнению простого гармонического движения

747 Общее решение этих уравнений может быть составлено из синусов и - фото 493(7.47)

Общее решение этих уравнений может быть составлено из синусов и косинусов. Легко проверить, что решениями являются следующие выражения:

748 где а и b константы которые надо еще определить так чтобы они - фото 494(7.48)

где а и b — константы, которые надо еще определить так, чтобы они укладывались в ту или иную физическую ситуацию.

К примеру, предположим, что при t =0 наша молекулярная система была в верхнем энергетическом состоянии | I >, а это требует [из уравнения (7.40)], чтобы γ I =1 и γ II =0 при t =0. Для такого случая должно быть а =1 и b =0. Вероятность того, что молекула окажется в том же состоянии | I > в какой-то позднейший момент t , равна квадрату модуля γ I , или

749 Точно так же и вероятность того что молекула окажется в состоянии - фото 495(7.49)

Точно так же и вероятность того, что молекула окажется в состоянии | II >, дается квадратом модуля γ II :

750 Пока ℰ мало и пока мы находимся в резонансе вероятности даются - фото 496(7.50)

Пока ℰ мало и пока мы находимся в резонансе, вероятности даются простыми колебательными функциями. Вероятность быть в состоянии | I > падает от единицы до нуля и возрастает опять, а вероятность быть в состоянии | II > растет от нуля до единицы и наоборот. Изменение обеих вероятностей во времени показано на фиг. 7.5.

Фиг 75 Вероятности обоих состояний молекулы аммиака в синусоидальном - фото 497

Фиг. 7.5. Вероятности обоих состояний молекулы аммиака в синусоидальном электрическом поле.

Нечего и говорить, что сумма обеих вероятностей всегда равна единице; ведь молекула всегда находится в каком - то состоянии.

Положим, что прохождение через полость занимает у молекулы время Т . Если сделать полость как раз такой длины, чтобы было μℰ 0 Т / =π/2, то молекула, ныряющая в нее в состоянии | I >, наверняка вынырнет из нее в состоянии | II >. Если она вошла в полость в верхнем состоянии, то выйдет из полости в нижнем. Иными словами, ее энергия упадет, и эта потеря энергии не сможет перейти ни во что другое, а только в механизм, который генерирует поле. Детали, которые помогли бы вам разглядеть, как именно энергией молекулы питаются колебания полости, не так уж просты; однако нам и не нужно все эти детали изучать, потому что имеется принцип сохранения энергии. (Мы могли бы, если бы это было нужно, изучить их, но тогда нам пришлось бы иметь дело с квантовой механикой поля в полости наряду с квантовой механикой атома.)

Подытожим. Молекула входит в полость, поле полости, колеблющееся с как раз нужной частотой, индуцирует переходы с верхнего состояния на нижнее, и высвобождаемой энергией питается осциллирующее поле. В работающий мазер молекулы доставляют достаточно энергии для того, чтобы поддерживались колебания полости, ее хватает не только на то, чтобы возместить потери в полости, но и на то, чтобы небольшие избытки энергии извлекались из полости. Итак, молекулярная энергия превращается в энергию внешнего электромагнитного поля.

Вспомним, что перед входом в полость нам приходилось пользоваться фильтром, который разделял пучок так, что в полость входило только верхнее состояние. Легко показать, что, если бы мы начали с молекул в нижнем состоянии, процесс пошел бы в другую сторону и энергия от полости отбиралась бы. Если пустить в полость нефильтрованный пучок, то сколько молекул будет отбирать энергию от полости, столько же из них будет отдавать ей свою энергию, и в итоге ничего не случится. В настоящем мазере, конечно, не обязательно делать (μℰ 0T/ ) точно равным π/2. И при других значениях (кроме точных кратных π) существует какая-то вероятность переходов из состояния | I > в состояние | II >. Но при этих других значениях прибор уже не имеет к. п. д., равного 100%; многие из молекул, покидающие полость, могли бы снабдить ее энергией, но не сделали этого.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 3. Квантовая механика отзывы


Отзывы читателей о книге Том 3. Квантовая механика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x