Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную]

Тут можно читать онлайн Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную] - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Альпина нон-фикшн, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика космоса [Как современная наука расшифровывает Вселенную]
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9614-5228-0
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную] краткое содержание

Математика космоса [Как современная наука расшифровывает Вселенную] - описание и краткое содержание, автор Йэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида.
«Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии.
Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».

Математика космоса [Как современная наука расшифровывает Вселенную] - читать онлайн бесплатно ознакомительный отрывок

Математика космоса [Как современная наука расшифровывает Вселенную] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Йэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Лаплас рассчитал орбиту Урана в 1783 году. Оказалось, что период обращения этой планеты составляет 84 года, а среднее расстояние от Солнца примерно равно 19 а.е., или 3 миллиарда километров. Орбита Урана, хотя и близка к круговой, обладает б о льшим эксцентриситетом, чем орбита любой другой известной планеты, ее радиус варьируется от 18 до 20 а.е. Через несколько лет, с появлением более совершенных телескопов, появилась возможность измерить период вращения планеты вокруг оси, который составил 17 часов 14 минут, и выяснить, что вращается она не в том же направлении, что все остальные, а в противоположном. Ось вращения Урана наклонена больше чем на 90° и почти лежит в плоскости эклиптики Солнечной системы, вместо того чтобы быть к ней приблизительно перпендикулярной. В результате на Уране наблюдается крайняя форма полярного дня: на каждом из полюсов планеты 42 земных года длится день и 42 года — ночь, причем когда один полюс погружен во тьму, на другом светит солнце.

Очевидно, в Уране есть что-то странное. С другой стороны, его орбита точно укладывается в закон Тициуса — Боде.

Когда орбита новой планеты была установлена и появилась возможность связать с ней давние наблюдения, стало ясно, что этот далекий мир астрономам случалось наблюдать и раньше, но его всегда ошибочно принимали за звезду или комету. На самом деле Уран едва-едва виден человеку с хорошим зрением; вероятно, он числился в качестве «звезды» еще в каталоге Гиппарха в 128 году до нашей эры и позже в Птолемеевом «Альмагесте». Джон Флемстид шесть раз наблюдал Уран в 1690 году и считал звездой; он даже присвоил ей регулярное обозначение 34 Тельца. Пьер Лемонье наблюдал его 12 раз между 1750 и 1769 годами. Хотя Уран — планета, движется он так медленно, что изменение его положения на небе нелегко заметить.

* * *

До этого момента роль математики в исследовании Солнечной системы была в основном описательной; математика позволяла свести длинную серию наблюдений к простой эллиптической орбите. Единственным предсказанием, которое делалось на основе математики, тогда было предсказание положения планеты на небе в определенные моменты времени в будущем. Но время шло, данные о наблюдениях накапливались, и Уран все более и более оказывался не там, где надо. Ученик Лапласа Алексис Бувар провел множество высокоточных наблюдений Юпитера, Сатурна и Урана, а также открыл восемь комет. Его таблицы движения Юпитера и Сатурна оказались очень точными, а вот Уран стабильно уходил от предсказанных для него точек. Бувар предположил, что орбиту Урана, возможно, возмущает какая-то еще более отдаленная планета.

Под «возмущением» здесь подразумевается просто воздействие. Если бы было можно выразить это действие математически как зависимость от параметров орбиты предполагаемой новой планеты, то удалось бы обратным ходом определить и саму эту орбиту. Тогда астрономы знали бы, куда смотреть, и если бы предсказание оправдалось, то они смогли бы обнаружить ту самую новую планету. Главная загвоздка при таком подходе состоит в том, что на движение Урана существенно влияют Солнце, Юпитер и Сатурн. Остальными телами Солнечной системы, пожалуй, можно пренебречь, но и без того разбираться придется по крайней мере с пятью телами. Точные формулы неизвестны даже для системы из трех тел; с пятью все намного сложнее.

К счастью, математики того времени успели уже придумать хитроумный способ обойти эти сложности. Математически возмущение — это новый эффект, изменяющий решения уравнений этой системы. К примеру, движение маятника под действием гравитации в вакууме имеет элегантное решение: маятник совершает одни и те же колебательные движения раз за разом, до бесконечности. Однако, если в системе присутствует сопротивление воздуха, уравнение движения изменяется, чтобы включить в себя эту дополнительную силу сопротивления. Для модели маятника эта сила — возмущение, она разрушает периодические колебания. В воздухе, в отличие от вакуума, колебания затухают, и маятник со временем останавливается.

Возмущения приводят к более сложным уравнениям, решать которые, как правило, труднее. Но иногда можно использовать само возмущение, чтобы понять, как меняются решения. Для этого мы записываем уравнения для разности между невозмущенным и возмущенным решениями. Если возмущение невелико, мы можем вывести приближенные формулы для искомой разности, отбросив при этом те члены уравнений, которые намного меньше возмущения. Этот прием упрощает уравнения в достаточной мере, чтобы их можно было решить в явном виде. Полученное в результате решение не является точным, но зачастую достаточно хорошо для практических целей.

Если бы Уран был единственной планетой в системе, его орбита представляла бы собой идеальный эллипс. Однако на эту идеальную орбиту оказывают возмущающее действие Юпитер, Сатурн и все остальные известные нам тела Солнечной системы. Совместное действие их гравитационных полей изменяет орбиту Урана, и это изменение может быть описано как медленная вариация орбитальных элементов Уранова эллипса. С большой точностью можно сказать, что Уран всегда движется по какому-то эллипсу, но во всякий новый момент это немного другой эллипс. Возмущения медленно изменяют его форму и наклонение.

Таким способом можно было вычислить, как должен двигаться Уран с учетом действия всех существенных возмущающих тел. Но наблюдения показывали, что на самом деле Уран не придерживается предсказанной таким образом орбиты. Вместо этого он постепенно отклоняется от нее, и эти отклонения можно измерить. Поэтому мы добавляем гипотетическое возмущение со стороны неизвестной планеты X, рассчитываем новую возмущенную орбиту, требуем, чтобы она совпадала с наблюдаемой орбитой, и вычисляем орбитальные элементы планеты X.

В 1843 году Джон Адамс продемонстрировал высший вычислительный пилотаж и рассчитал орбитальные элементы гипотетического нового мира. К 1845-му Урбен Леверье независимо от него провел собственные аналогичные вычисления. Адамс направил свои предсказания Джорджу Эйри, тогдашнему королевскому астроному Британии, с просьбой поискать на небе предсказанную планету. Эйри встревожили некоторые аспекты расчетов Адамса — напрасно, как выяснилось позже, — но Адамс не смог рассеять его сомнений, так что ничего сделано не было. В 1846 году Леверье опубликовал собственное предсказание, тоже не вызвавшее особого интереса, — до тех пор, пока Эйри не заметил, что результаты обоих математиков очень похожи. Он поручил директору Кембриджской обсерватории Джеймсу Чаллису провести поиск новой планеты, но Чаллису не удалось ничего обнаружить.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Йэн Стюарт читать все книги автора по порядку

Йэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика космоса [Как современная наука расшифровывает Вселенную] отзывы


Отзывы читателей о книге Математика космоса [Как современная наука расшифровывает Вселенную], автор: Йэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x