Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
С другой стороны, если две волны одной и той же частоты звучат точно в фазе, они складываются друг с другом, так что сжимаемые области еще больше сжимаются, а разрежаемые области разрежаются еще больше, чем это бы было, если бы любой из этих звуков воспроизводился в одиночку. На аналогичной поперечной волне гребни и впадины отдельных волн совпадают и суммарные гребни будут выше, а впадины глубже, чем у любой из них. Наше ухо услышит один звук той же высоты тона, но более громкий. Это явление называется «укреплением» ( reinforcement) [53] Авторский термин. (Примеч. пер.)
.
На самом деле полная интерференция, или укрепление, маловероятна. Вместо этого две или более волн объединяются, укрепляясь здесь, уменьшаясь там, и в результате формируют окончательные образцы очень сложной формы, которая нисколько не будет походить на периодические синусоидальные волны ни одной из исходных нот. Однако сколь сложными бы эти образцы ни были, они останутся периодическими. То есть если взять небольшой повторяющийся отрезок из части образца, то повторением этого отрезка можно составить весь образец целиком.
В 1807 году французский физик Жан Батист Жозеф Фурье (1768–1830), изучая общие формы волны, показал, что любой периодический образец волны, каким бы сложным он ни казался, может быть разложен соответствующими математическими методами на составляющие его синусоидальные волны. Такие математические методы получили название «гармонический анализ», поскольку их можно применять по отношению к музыкальным звукам. (Образцы волн музыкальных звуков составлены из отдельных синусоидальных волн, которые демонстрируют организованный набор взаимосвязей. В тех случаях, когда этого не происходит, то есть когда составляющие синусоидальные волны выбираются и объединяются хаотически, результатом является не музыка, а «шум». Разница аналогична той, что существует между сложной, но правильно организованной геометрической фигурой и набором тех же линий, но начерченных случайным образом, — в последнем случае мы получаем обыкновенные каракули. Однако методы, разработанные Фурье, могут использоваться и для анализа образцов шумовых волн, поэтому для обозначения их часто употребляют более нейтральный термин — «волновой анализ».)

Давайте ограничимся рассмотрением очень простых примеров и не будем вовлекать сложные математические вычисления. Рассмотрим две ноты различной высоты тона, а потому — различной частоты, звучащие вместе. Сжатые области звуковой волны (или гребни, если мы будем говорить в более легко визуализируемых аналогиях поперечной волны) двигаются с более короткими интервалами — в случае ноты с более высокой частотой, а значит, они настигнут таковые звуковой волной с более низкой частотой.
Предположим, что одна нота имеет частоту 250 раз в секунду, а другая нота — частоту 251 раз в секунду, и предположим, что они начинают звучание в фазе. Первый гребень появляется одновременно у обеих нот. Второй гребень у ноты 251/с появляется только чуть-чуть раньше, чем второй гребень у ноты 250/с. Третий гребень появляется еще раньше, а четвертый гребень — раньше, чем третий. Однако в конце первой секунды и одна и другая ноты закончили точно 250 и 251 колебание соответственно. Они опять в фазе, но нота 251/с получает в каждую секунду один полный дополнительный гребень [54] Две ноты «гоняются друг за другом» только с точки зрения числа гребней, создаваемых в единицу времени, а не в смысле скорости. Обе ноты распространяются в пространстве с одной и той же скоростью. В действительности скорость звука не зависит от частоты.
. И за каждую следующую секунду нота 251/с получает еще один новый дополнительный полный гребень.
В точке, где две ноты находятся в фазе, гребень к гребню, имеется короткий период полного укрепления, и нота звучит громко. По мере прохождения секунды и падения гребней они все более и более выходят из фазы, то есть интерференция все более и более увеличивается, а звук становится более тихим. В полуминутной точке, на полпути между двумя синфазными периодами, ноты полностью выходят из фазы и гребень одной располагается напротив впадины другой ноты; в этой точке имеется короткий период полной интерференции. Результатом ее является полное затухание и пропадание звука, причем периодичность затухания происходит с интервалом, следующим за тем, когда гребни совпадают. Такое периодическое изменение громкости, когда две ноты звучат вместе, называется «биением».
Давайте рассмотрим еще две ноты с частотами 250/с и 252/с соответственно. Тогда после половины секунды одна нота закончит 125 колебаний, а другая — 126 колебаний, и они возвратятся в фазу, соответствующую гребню. Это будет повторяться каждую половину секунды, то есть будут получаться два биения в секунду. Число биений в секунду, в случае одновременного звучания двух нот, равно разности в частоте этих двух нот.
Если биения настольно редкие, что их можно различимо услышать, то они создают звуковые комбинации, неприятные для слуха. Наиболее неприятным является, очевидно, 30 биений в секунду. Однако в том случае, когда число биений в секунду больше 60, они взаимопроникают друг в друга, и для человеческого уха их комбинация кажется приятной или гармоничной.
Теперь давайте рассмотрим две ноты, у которых одна имеет частоту точно в два раза больше другой. Например, первая имеет частоту 220/с, а вторая — 440/с; отношение частот равно 1:2. Число биений, когда ноты звучат вместе, равно 440—220, или 220 раз в секунду. Биения дублируют ноту более низкого тона, так что кажется, что две ноты «сплавляются» друг с другом и начинают представлять собой одну и ту же ноту. Они гармонируют друг с другом.
Именно Пифагор был первым, кто заметил, что гармонирующие ноты связаны между собой целочисленными отношениями небольшой величины. У него не было никакой аппаратуры для непосредственного измерения самой частоты, но он рассмотрел струны различной длины. Он обнаружил, что две струны с длинами, относящимися как 1:2, производят приятную комбинацию, так же как струны с соотношением длин 2:3 и 3:4.
(Результаты этих наблюдений за звуком были истолкованы Пифагором с мистической точки зрения. Он рассматривал роль взаимодействия небольших целочисленных отношений в создании благозвучий в соответствии со своими взглядами о том, что вся Вселенная управляется числами. Он и его ученики предполагали, что и сами планеты способны создавать звуки — так называемую «музыку сфер», ноты в которой основаны на их расстояниях относительно Земли. Наука не могла освободиться от этих заблуждений в течение 2000 лет.)
Читать дальшеИнтервал:
Закладка: