Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Тут можно читать онлайн Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Мир, год 1970. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1970
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия краткое содержание

Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - описание и краткое содержание, автор Эрик Роджерс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - читать книгу онлайн бесплатно, автор Эрик Роджерс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Удельная теплоемкость газов

Сравните ваше решение задачи 8 с экспериментальным значением удельной теплоемкости гелия, равным 0,74 [215]. Предсказания и эксперимент согласуются очень хорошо. Измеряемое значение одно и то же при всех температурах, как это следует из вычислений. Следовательно, наша теория хорошо оправдывается.

Найдем теперь аналогичные данные для водорода. Если вместо 4 кг гелия мы возьмем 2 кг водорода в этом же объеме, то получим, что удельная теплоемкость должна быть около 1,5. Экспериментальное значение совершенно другое — около 2,5. Таким образом, наша теория продержалась недолго. Это расхождение оказывается полезным для новой теории. Получаемое из статистической механики равномерное распределение энергии в общем случае касается не только кинетической энергии движения. Оно утверждает только, что «средняя кинетическая энергия у всех молекул одинакова». Оно поровну наделяет энергией все независимые типы движений молекулы . Для атомов гелия, которые мы представляли в виде крошечных круглых шариков, хаотическое движение можно разбить на три независимые компоненты: движение вверх — вниз, вперед — назад и влево — вправо в направлениях х, у и z . Это — поступательное движение молекул, поэтому энергию его мы называем поступательной кинетической энергией. Равномерное распределение энергии говорит нам, что энергия в среднем складывается из трех равных долей поступательного движения. Сумма этих трех [216]долей должна давать полную кинетическую энергию, которая равна 3/ 2 PV . Следовательно, на каждую долю поступательной энергии приходится 1/ 2 PV .

Фиг.91. Поступательное движение.

Атомы типа атома гелия обладают энергией поступательного движения. Любое такое движение можно разложить на три перпендикулярные составляющие вдоль осей х, у и z . Движение молекулы в каждом из этих трех направлений можно считать независимым .

Фиг. 92. Молекула из двух атомов (типа H 2).

а— молекула представляет собой нечто «лохматое»; б— схематическое изображение такой молекулы в виде гантели

Но в молекулу водорода входят два атома Н-Н, и она, кроме того что движется как целое, может еще вращаться наподобие гантели (фиг. 93), т. е. обладать и вращательной энергией.

Фиг 93 Вращательное движение Молекула из двух атомов типа Н2 - фото 182

Фиг. 93. Вращательное движение.

Молекула из двух атомов (типа Н2) характеризуется двумя независимыми направлениями вращения. Здесь это вращения вокруг осей у и z .

У такой гантели, вообще говоря, имеются три независимые оси вращения. Однако вращение вокруг третьей оси (оси гантели) возбудить при соударениях слишком трудно. Таким образом, необходимо учитывать две доли вращательной энергии, кроме трех долей поступательной, каждая из которых равна 1/ 2 PV . Следовательно, при расчете теплоемкости водорода надо иметь в виду, что теплота расходуется на увеличение не только поступательной, но и вращательной энергии, т. е. вместо трех долей нужно учитывать пять. Его удельная теплоемкость поэтому должна быть в 5/ 3раза больше наших предсказаний, а 5/ 3∙(1,5) = 2,5; тогда согласие с экспериментальным результатом 2,40 оказывается очень хорошим. От этого же химики должны были бы прийти в восторг, ибо им не было известно, что такое молекула водорода: Н 2? Н 4? Н 6?…, теперь же они получили аргумент в пользу Н 2. К сожалению, все не так просто. Пара атомов в молекуле может еще колебаться друг относительно друга вдоль оси молекулы (фиг. 94).

Физика для любознательных Том 2 Наука о Земле и Вселенной Молекулы и энергия - изображение 183

Фиг. 94. Колебательное движение вдоль оси молекулы.

Это движение обладает потенциальной и кинетической энергиями.

Колебательное движение потребует своей доли энергии, даже двойной доли, ибо любое колебание обладает как кинетической, так и потенциальной энергиями, а равномерное распределение обещает стандартную долю энергии каждой из них. Но тогда мы получили слишком много, 3,5. Экспериментальное значение теплоемкости водорода изменяется с температурой (фиг. 95).

Фиг. 95. Удельная теплоемкость водорода.

При очень низких температурах оно равно 1,5, в области комнатных температур 2,4, а при очень высоких — ползет к 3,5. Это как раз те значения теплоемкости, когда возбуждены такие движения:

Поступательное (3) (всего 3 доли)… удельная теплоемкость 1,5

Поступательное (3) + вращательное (2)… удельная теплоемкость 2,5

Поступательное (3) + вращательное (2) + колебательное (2)… удельная теплоемкость 3,5

Эти ступеньки для каждого из ожидаемых значений были загадкой, пока не сообразили, что они получаются из ограничений на вращательную и колебательную энергии — ограничений квантового типа. Квантовые правила возникшие из другого неожиданного поведения излучения, требуют, чтобы энергия на периодическое движение, такое, как колебания или вращение, бралась стандартными «порциями». Энергия каждой из таких «порций», или квантов, определяется правилом [217];

(ЭНЕРГИЯ КВАНТА) = (УНИВЕРСАЛЬНАЯ ПОСТОЯННАЯ)∙(ЧАСТОТА ПОВТОРЕНИЯ ДВИЖЕНИЯ)

Таким образом, вращение или колебание с высокой частотой должно обладать энергией в виде одной, двух, трех…. больших порций, возможно слишком больших, чтобы атом или молекула могли иметь хотя бы одну порцию для поддержания средней энергии, характерной для данной температуры. (Если бы сахар продавался и поедался только мешками по 100 кг, он исчез бы из рациона «среднего» жителя и лишь сказочным гигантам, пожалуй, такая норма была бы по вкусу.) Эти порционные ограничения на равномерное распределение энергии объясняют все особенности и предсказывают новые экспериментальные факты. Сообщим молекуле один квант энергии вращения. Это заставит ее вращаться очень быстро, ибо ее инерция вращения (момент инерции) довольно мала.

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ВРАЩЕНИЯ = 1/ 2(МОМЕНТ ИНЕРЦИИ)∙(УГЛОВАЯ СКОРОСТЬ ВРАЩЕНИЯ) 2

Но при быстром вращении молекулы кванты ее энергии должны быть большими. Поэтому молекулы поглощают энергию либо большими квантами, либо не поглощают вовсе и не вращаются. При низких температурах средняя доля энергии, положенная по закону равномерного распределения, оказывается гораздо меньше одного кванта, так что вращаться могут лишь немногие молекулы. При комнатной температуре средняя доля составляет несколько квантов, и равномерное распределение осуществимо.

Молекулы колеблются с очень высокой частотой , поэтому практически ни одна из молекул не может колебаться, пока газ не нагрет до очень высокой температуры .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Роджерс читать все книги автора по порядку

Эрик Роджерс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия отзывы


Отзывы читателей о книге Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия, автор: Эрик Роджерс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x