Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила
- Название:Физика для любознательных. Том 1. Материя. Движение. Сила
- Автор:
- Жанр:
- Издательство:Мир
- Год:1969
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила краткое содержание
Физика для любознательных. Том 1. Материя. Движение. Сила - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Мы должны составить сумму, содержащую основную составляющую с длиной волны исходного цуга волн + составляющую с несколько большей длиной волны +… + составляющую с еще большей длиной волны… + и т. д., и такой же набор более коротких длин волн. Горбы этих составляющих совпадают друг с другом в центре, но дальше согласованность их хода нарушается, и они гасят друг друга. Если исходный цуг волн длинный, то основные составляющие будут заключены в узком интервале частот или длин волн — чем длиннее цуг, тем уже полоса частот. Напротив, для очень короткого цуга (в предельном случае для отдельного выброса или импульса) требуется широкая полоса частот. (Это не очевидно ; не обращаясь к математике, вы можете в лучшем случае сказать, что это могло бы быть так.) Изложенные представления имеют важное значение в современной атомной теории.
Основное достоинство гармонического анализа (который, как утверждает теорема Фурье, может быть применен всегда) состоит в том, что он позволяет с помощью простого математического описания разлагать сложные движения на серию гармонических колебаний. Гармонический анализ находит широкое применение в физике и технике, им пользуются специалисты в области телефонной связи, радиоинженеры, составители таблиц, предсказывающих океанские приливы, и т. д., а в наши дни и физики-теоретики, которые описывают поведение атомов и электронов с помощью гармонических составляющих.

Фиг. 272. Гармонический анализ.
а — составление «волнового пакета» путем сложения простых гармонических составляющих. Для этого синтеза необходимы гармоники всех частот (т. е. всех длин волн) от нуля до бесконечности. Мы получим короткий волновой пакет без возмущений до и после него. Важнейшие гармоники попадают в центральный «диапазон» частот (или длин волн), за пределом которого амплитуда гармоник должна быть еще меньше. Чем уже этот диапазон частот, тем длиннее волновой пакет, тем больше в нем укладывается длин волн;
б— разложение ограниченного цуга волн на составляющие. Если направить непрерывный поток волн на какую-либо преграду и убрать ее на короткое время, то можно ожидать, что за ней будет ограниченный цуг волн, который можно разложить на бесконечно большое число гармонических составляющих бесконечно малой амплитуды. Важнейшие гармонические составляющие попадают в центральный «диапазон» частот. Чем короче исходный цуг волн, тем шире получается этот диапазон частот гармоник при разложении;
в— частицы и волны. Согласно нашим современным представлениям, все движущиеся частицы (электроны, ядра и т. д.) обладают волновыми свойствами. Частицу можно рассматривать как своего рода волновой пакет. Волна, входящая в состав волнового пакета, характеризует положение частицы и ее движения. Квадрат амплитуды волны в пределах пакета указывает вероятность нахождения частицы в этом месте, а длина волны определяет количество движения частицы по формуле mv= h/ λ. Если мы хотим точно указать положение движущейся частицы, то должны ограничить связанную с ней волну коротким цугом волн, т. е. коротким волновым пакетом. Но такой волновой пакет будет представлен целым набором гармонических составляющих, т. е. возможные значения количества движения будут лежать в широких пределах. Значит, мы не можем точно указать количество движения частицы. Если же мы захотим точно задать количество движения, то должны будем ограничиться узким интервалом длин волн гармоник, Поэтому нам придется охарактеризовать положение частицы протяженным волновым пакетом, а оно будет в высшей степени неопределенным.
Применение математического анализа и формула маятника
Начнем с движения, определяемого соотношением
s= A∙sin k t
где А — амплитуда, а k — постоянная. Продифференцируем смещение s по времени t и найдем скорость, затем произведем дифференцирование еще раз и найдем ускорение
v = d s/d t= k∙A∙cos k t
a = d v/d t= — k 2A∙sin k t= — k 2 s
Отсюда видно, как вычислить период Т рассматриваемого движения:
Т= Промежуток времени от t = 0 до t = T,
= Промежуток времени, в течение которого проходит полный цикл изменения s ,
= Промежуток времени, в течение которого величина ( kt ) пробегает значения от 0 до 2π;.
т. e.
период Т= 2π/ k.
Таким образом, относительно любой системы, которой действующие на нее силы сообщают ускорение — k 2 s , можно сказать, что «эта система способна совершать простые гармонические колебания с периодом 2π/ k ».
«Формула маятника» [160]
Мы уже показали, что при малых отклонениях маятника
УСКОРЕНИЕ ГРУЗА = ( g/ L)∙ s
Сравним это с полученным выше результатом
УСКОРЕНИЕ = —k 2 s
Величина, равная в общем виде [кг], в случае маятника равна [ g / L ].
Таким образом,
Это «формула маятника», которой пользуются при точном измерении g с помощью простого маятника.
Волны
Любое изменение формы, при котором форма перемещается (но это не связано с переносом среды), называется волной . Быстро движутся волны воды, причем вода взметается вверх и опускается, а волны расходятся кругами, не унося воду далеко с собой. Понаблюдайте, как движется вверх и вниз плавающий на воде кусок пробки или поплавок, когда мимо него проходят волны. Представьте себе, как распространяются волны от веревки, рябь в пруду, звуковые волны в воздухе. От порыва ветра по некошеному полю пшеницы пробегает волна; она бежит по полю, а стебли остаются на месте, сгибаясь и снова выпрямляясь. Мы можем даже сказать, что слух в толпе тоже распространяется как волна.
Скорость, длина волны, частота
Скорость распространения волны V — это скорость, с которой перемещается ее форма, т. е. скорость перемещения любого участка волны, будь то гребень, или впадина, или область сжатия (в акустической волне).
Вдоль натянутой веревки могут перемещаться с определенной скоростью поперечные волны, и если конец веревки будет совершать простое гармоническое движение, то мы получим простую гармоническую волну с определенной длиной волны, которую обозначим греческой буквой λ (фиг. 273).

Фиг. 273. Импульс ( а) и простая гармоническая волна ( б).
Читать дальшеИнтервал:
Закладка: