Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила
- Название:Физика для любознательных. Том 1. Материя. Движение. Сила
- Автор:
- Жанр:
- Издательство:Мир
- Год:1969
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила краткое содержание
Физика для любознательных. Том 1. Материя. Движение. Сила - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
90
Идеальный способ калибровки — простой с точки зрения теории, но трудный на практике — заключается в том, чтобы подгонять пружины по их способности сообщать ускорение. Прикрепляя пружины поочередно к одной и той же тележке, сжимайте или растягивайте их, пока все они при некотором стандартном удлинении не будут сообщать ей одно и то же ускорение.
91
Или, если вам больше нравится, можно изготовить несколько одинаковых металлических грузов, каждый из которых притягивался бы землей так, чтобы растягивать пружины с силой 1 странг; затем, подвешивая 1, 2, 3… таких груза к основной пружине, отмечают ее удлинения на шкале; 1, 2, 3… странга.
92
Если не ввести какого-либо трения, пружина будет совершать паразитные колебания значительной амплитуды. Трение о шероховатые поверхности привело бы к погрешностям; идеальный результат обеспечивает трение в жидкости, позволяя «заглушить» колебание измерительного устройства: силы трения в жидкости возрастают с увеличением скорости и равны нулю, когда жидкость находится в состоянии покоя. (Подвесьте маятник в жидкости и посмотрите, как затухают его колебания. Чем больше вязкость жидкости, тем больше силы, препятствующие движению; в любом случае в конце концов колебания маятника успокаиваются, и он застывает в вертикальном положении.) Трение в жидкости никогда не изменяет положения равновесия. В нашем силомере шнур, прикрепленный к пружине, следует обмотать вокруг оси, нижний конец которой имеет лопасти и погружен в густое масло.
93
Замечания по поводу масс в опыте 2(в)
Получение удвоенной и утроенной массы . На лекции невозможно подбирать несколько одинаковых тележек и составлять их вместе. Массу тележки можно удвоить, положив на нее некоторое количество металла с той же массой, что и тележка, определив ее «взвешиванием». Мы находим количество металла, которое уравновешивает на весах пустую тележку. Тогда мы знаем, что земное притяжение действует на груз и тележку с одинаковыми силами. Мы знаем также, что при свободном падении тележка и груз падают с одинаковым ускорением. Следовательно, одна и та же сила сообщает одинаковое ускорение обоим телам. Поэтому массы груза и тележки одинаковы — это наше определение равенства масс (фиг. 149). Однако при этом мы приняли без доказательства, что гравитационная масса и инертная масса равны или по крайней мере пропорциональны друг другу.
Поправка на момент инерции колес тележки. При качении тележки по рельсам ее колеса вращаются и движение ободов требует приложения небольшой ускоряющей силы, как если бы тележка обладала добавочной массой. Вы встретитесь с этой «инерцией вращения» в другом месте нашего курса; ею можно воспользоваться в опыте 2(в) . Уменьшим массу тележки, удалив небольшое количество материала, из которого она сделана, и тем учтем вращение колес. Ради простоты, каждый раз учитываем вращение колес, удаляя некоторое количество материала, а в последующем рассмотрении не считаем, что эта масса потеряна, поскольку она как бы заключена в колесах. Эту поправку на вращение колес можно рассчитать по данным колеса или оценить методом проб и ошибок. Применяя последний метод, мы используем два измерения в основном эксперименте, чтобы найти поправки, и лишь одно, третье, измерение — для ответа на главный вопрос.
94
Если это покажется странным, воспользуйтесь криволинейной поверхностью собственного лба в качестве наклонной плоскости и прижмите к нему палец. Лоб будет отталкивать палец с силой, направленной прямо от поверхности, если не считать трения, которое вы сможете почувствовать. Попробуйте представить себе, что трение при этом отсутствует.
95
Если вы намерены стать осторожным физиком, избегайте пагубного слова «создает». Все, что мы на самом деле знаем, это то, что силы и ускорение сопутствуют друг другу. Во многих случаях не удается независимым образом показать, что действует сила, просто мы считаем, что сила действует, поскольку наблюдается ускорение.
96
Качение шара вносит одно осложнение, о котором мы умолчали, поэтому для исследования этой зависимости между силой и ускорением мы пользуемся скольжением тел по наклонной плоскости «без трения» или наблюдаем движение тележки по рельсам. В последнем случае тележка движется прямолинейно, и лишь ее колеса вращаются.
97
Предположим, у нас имеется несколько наклонных плоскостей одинаковой высоты h , но с разным наклоном, и движение по ним происходит без трения (фиг. 152).

Фиг. 152.
Последим за скольжением какого-нибудь тела из состояния покоя в верхней точке каждой из наклонных плоскостей. Если ускорения пропорциональны h / L , можно предсказать, что во всех случаях тело к концу движения приобретет одну и ту же скорость v . Для равноускоренного движения из состояния покоя v 2= 2 as(см. гл. 1, приложение I ), и если a= C( h/ L), где С — постоянная, то v 2= 2 as= 2 C( h/ L)∙(Расстояние L) = 2 C∙ h, т. е. одинаково для всех наклонных плоскостей. Если же скорость v одинакова для всех наклонных плоскостей одной и той же высоты h , то ускорения должны быть пропорциональны отношению h / L . Галилей был убежден, что это свойство «одинаковой скорости» установлено им правильно, и во многих случаях пользовался им как отправной точкой при рассмотрении ускоренного движения.
98
Не так уж просто заметить, что зависимости F ~ а и F ~ М можно объединить В формулу F= K∙ M∙ а. Вспомним, что первые две формулировки содержат некоторые условия. Первая гласит: « F ~ апри неизменной массе М ». Но если М постоянна, то мы сможем записать более общую формулу F= K∙ M∙ а.
Таким образом,
F= (K∙ M)∙ а = (Постоянная)∙ а,
т. е. F ~ a .,
Следовательно, формула F= K∙ M∙ авключает утверждение « F~ a, если Мпостоянна ».
Второе утверждение гласит, что F ~ М , если ускорение а неизменно. Но если а остается неизменным, то мы можем записать формулу F= K∙ M∙ аследующим образом:
F= (K∙ M)∙ а = (Постоянная)∙ М,
Читать дальшеИнтервал:
Закладка: