Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Название:Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Автор:
- Жанр:
- Издательство:Мир
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра краткое содержание
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Задача 9
«Стекло притягивает молекулы воды». Это известный вывод, к которому приводит изучение поверхностного натяжения. Какой способ экспериментальной проверки вы бы предложили для выбора изолятора, при работе с которым не возникало бы больших трудностей из-за его увлажнения?
Ток — это движение зарядов
Когда по проводнику движутся заряды по направлению к какому-либо заряженному телу или от него, мы говорим, что течет ток. Обнаружить действия тока (тепловое действие, химические эффекты, магнитное поле) можно, но они очень слабы [54]. Роуленд в 1876 г. проделал в этой связи замечательный опыт. Он раскрутил колесо, на обод которого были нанесены заряды, и наблюдал такое же магнитное поле, какое создал бы ток, текущий по ободу. Подключите в лаборатории батарею к пластинам очень большого «конденсатора» и отметьте с помощью измерительного прибора кратковременный импульс тока, связанного с движением зарядов к пластинам под действием батареи ( опыт 7 гл. 41 ).
Вспомним теперь, как мы начали с заряжения тел от батареи, и вернемся снова к измерительным приборам и батареям, которыми пользуются в современной электротехнической лаборатории. Батареи являются источником статических зарядов, обладающих точно такими же свойствами, что и заряды, получаемые при натирании стержня. Кулоны зарядов Q 1и Q 2, входящих в выражение закона Кулона, точно такие же, как кулоны, фигурирующие в соотношении «1 а = 1 кулон/сек ». Они одинаковы по природе, и мы приравняем их по величине путем надлежащего выбора значения . (При экспериментальном определении значения мы будем пользоваться для измерения напряженности электрического поля обычным вольтметром, градуированным в дж/кулон .) Отныне мы будем пользоваться полным набором нашего оборудования, измеряя напряжение либо вольтметром, либо электроскопом, и брать заряды с одинаковым успехом от электрофора, генератора Ван-де-Граафа, батареи или даже от сетевого источника питания с трансформатором и выпрямляющим диодом.
Модернизация представлений
Почему не пойти еще дальше в этой модернизации точки зрения и не излагать всю электростатику с помощью представления о свободных электронах? Просто потому, что ни один из экспериментов, рассмотренных до сих пор в этой главе, не обнаружил какого-либо явления, для описания которого необходимо привлечь электроны. Кроме того, существуют положительные заряды, в некоторых веществах движутся именно они.
Мы теперь знаем, что в металлических проводниках роль подвижных зарядов играют отрицательные электроны. Они могут свободно проходить через кусок металла, тогда как положительные заряды неподвижно закреплены в атомах твердого тела — металла. Таким образом, когда говорят, что «положительные заряды уходят по проволоке к земле», следовало бы сказать: «отрицательные заряды (электроны) идут по проволоке от земли и нейтрализуют положительные заряды у верхнего конца своего пути». Говоря: «шар, несущий положительные заряды», мы должны были бы сказать: «шар, с которого удалены отрицательные электроны». Когда говорят, что положительно заряженный шар, помещенный вблизи металлического стержня, «притягивает отрицательные заряды и отталкивает положительные заряды к другому концу стержня», следовало бы сказать: «притягивает отрицательные заряды, в то время как положительные заряды (нескомпенсированные) остаются у другого конца стержня».
В то же время в наших первых опытах ничуть не менее удобно считать, что движутся и положительные, и отрицательные заряды. В таком случае, поскольку неважно , движутся ли те и другие заряды или только отрицательные электроны, было бы антинаучно в этой связи настаивать на существовании какого-то различия. Тут вы сталкиваетесь с современной проблемой науки: хороша ли теория, которая удобна, непротиворечива и вполне подходит для объяснения рассматриваемого случая, или она должна быть, кроме того, истинной? Если вам сразу же необходимы настоящие электроны, то сформулируйте для себя с их помощью все прежние объяснения. Если вы приняли непреклонную позицию многих современных теоретиков, то придерживайтесь старой точки зрения, пока не столкнетесь со случаями, когда существенно, что «движутся только электроны». В необходимости ввести в рассмотрение электроны вы убедитесь дальше в этой книге; мы будем тогда пользоваться ими в полной мере.
Эбонитовый стержень отнимает электроны у меха, стеклянный стержень отдает их шелку. Мы знаем теперь, что любые два вещества, приведенные в соприкосновение друг с другом, обмениваются каким-то количеством электронов, причем одно приобретает добавочные электроны (приобретая тем самым отрицательный заряд), а другое теряет часть своих (становится положительно заряженным). Этот обмен электронами продолжается очень недолго после того, как оба тела приводятся в контакт. Обмен происходит до тех пор, пока не установится небольшая разность потенциалов (созданная разделенными при обмене положительными и отрицательными зарядами), которая препятствует дальнейшей миграции зарядов. При разобщении обоих тел механическое отделение одного тела от другого приводит к увеличению этой разности потенциалов, в результате чего разделенные заряды могут даже быть возвращены на место. Чтобы получить большой величины заряд «трением», необходим контакт между телами, причем дело тут не в трении, а в относительной скорости: быстро проведите шелком но стеклянному стержню, словно смахивая с него пыль, — не натирайте его.
Самый первый опыт по электростатике: притяжение мелких кусочков материала
Опыт, который проделывали древние греки, наблюдавшие притяжение мелких кусочков дерева и т, д. натертым янтарем, не так легко объяснить, как обычно полагают. Почему заряженное тело должно притягивать незаряженные кусочки материала? Потому что оно индуцирует в них заряды. Но тогда эти кусочки должны быть из металла, чтобы могло произойти разделение индуцированных зарядов.
В самом деле, легкие кусочки металла, например мелкие обрывки алюминиевой фольги, очень хорошо притягиваются заряженным стержнем, и объяснением этому служит взаимодействие с индуцированными зарядами. С кусочками идеального изолятора едва ли можно было бы наблюдать какой-нибудь эффект, но кусочки дерева или бумаги всегда обладают достаточной влажностью, которая делает их слегка проводящими. Если эти кусочки лежат на столе, связанном с землей, то «одноименный» наведенный заряд может уходить в землю, тогда притяжение будет еще сильнее. Это явление иллюстрирует фиг. 85.
Фиг. 85. Заряженный изолятор притягивает мелкие стружки металла.
Читать дальшеИнтервал:
Закладка: