Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Тут можно читать онлайн Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Мир, год 1973. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1973
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра краткое содержание

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - описание и краткое содержание, автор Эрик Роджерс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать книгу онлайн бесплатно, автор Эрик Роджерс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Задача 11. Осциллограф

В корпусе электронного осциллографа помещаются радиолампы (диоды с анодом и подогревным катодом), которые выпрямляют поступающий переменный ток, превращая его в полупериодные или двухполупериодные «всплески» постоянного тока, а также катушки индуктивности и конденсаторы для переделки этих всплесков в постоянное напряжение. Там есть трансформатор, подающий переменный ток, подлежащий выпрямлению, и обеспечивающий низкое напряжение для подогревных спиралек. Но основной деталью является сама электроннолучевая трубка.

а) Набросайте упрощенный чертеж такой трубки в разрезе или сделайте объемный рисунок, обозначив ясно основные части.

б) Объясните, откуда берется зеленое пятнышко на экране.

в) Чтобы сделать зеленое пятнышко ярче, питание, подаваемое на трубку, можно изменить по крайней мере двумя различными способами. Попробуйте догадаться, что это за способы, и объясните, почему каждое из этих изменений дает желаемый эффект. (В современных трубках, когда поворачивается ручка увеличения яркости, ни один из этих двух наиболее очевидных способов не используется!)

г) Когда разность потенциалов с прибора, проверяемого с помощью осциллографа, подается на клеммы V и G , пятнышко смещается вверх или вниз (а если на клеммы подан переменный ток, то оно смещается попеременно вверх — вниз, вверх — вниз и т. д.). Объясните, как поданное напряжение вызывает такой эффект [110].

д) Когда мы хотим зафиксировать зависимость этого движения вверх и вниз от времени, мы заставляем пятнышко равномерно смещаться по горизонтали (затем очень быстро обратно, затем снова в первоначальном направлении и т. д.). Это смещение обеспечивается цепью, которая тоже помещается в корпусе прибора; она в основных чертах изображена на фиг. 8. Посмотрите на эту диаграмму и объясните, как работает такая система получения равномерного смещения (развертки). ( Примечание. Быстрое движение в обратном направлении требует быстрого переключения с помощью радиолампы. Описывать лампу здесь нет смысла. На схеме указано ее включение параллельно конденсатору. Лампа содержит газ, в нем происходит электрический пробой, когда разность потенциалов достигает определенного значения.)

Фиг. 8. К задаче 11.

Глава 37. Магнитные катапульты: работа электродвигателей и изучение атомов

Краб, живущий на мелководье, — настоящий политик. Когда опасность угрожает ему сверху, он смотрит прямо перед собой и убегает вбок.

Автор неизвестен

Катапультирующие силы

На проволоку с током, расположенную поперек магнитного поля, действует выталкивающая сила, перпендикулярная и полю, и проволоке. Это та самая «катапультирующая сила», о которой упоминалось в гл. 34 (см. примечание на стр. 187). Если ток потечет в обратную сторону или магнитное поле изменит свое направление на противоположное, то и направление действия силы изменится на обратное. Если проволока не закреплена, то она движется, как краб, упомянутый в эпиграфе [111].

Катапультирующая сила действует на поток электронов в вакууме точно так же, как на ток, текущий по проволоке.

Фиг. 9. Катапультирующие силы. Трапеция в магнитном поле.

Сила, поле и ток перпендикулярны друг другу так же, как взаимно перпендикулярны оси х, у, z .

ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ

Поднесите магнит к электронному осциллографу или к телевизионной трубке, и вы увидите, что пятнышко на экране сдвинется. Рассмотрев направление пучка электронов и направление магнитного поля, определите, куда сдвигается пучок — вдоль поля (как это было бы в случае электрического поля) или в сторону, крабообразно.

Пучок электронов, называемых катодными лучами, можно создать, выбивая электроны из молекул газов, оставшихся в разрядной трубке после откачки (или из металлического катода), и разгоняя их высоким напряжением электронной пушки, из которой они вылетают через прорезь в диафрагме. Эти электроны, ударяясь об экран, установленный слегка наискось вдоль их пути, заставляют его светиться и отмечают тем самым свой путь. Попробуйте поднести к трубке магнит или проволоку, по которой течет ток.

Фиг. 12. Катапультирующая сила.

Электронный пучок в осциллографе или телевизионной трубке.

Фиг. 13. Катапультирующая сила.

«Катодные лучи» (пучок электронов) в разрядной трубке с наискось установленным экраном.

Действие катапультирующих сил еще более наглядно демонстрируется с помощью узкого пучка электронов из небольшой электронной пушки, когда он пропускается через пары ртути или водорода, заставляя их светиться (фиг. 14). Если приложить магнитное поле, то оно будет увлекать поток электронов в сторону, в направлении, перпендикулярном их движению, как Земля увлекает Луну. Светящаяся полоска замыкается в кольцо. Для этого магнитное поле должно быть перпендикулярно направлению движения электронов. Если скорость пучка имеет составляющую вдоль направления магнитного поля, то эта составляющая остается неизменной, превращая путь, по которому движется пучок, в сверкающую спираль. То же самое, только в грандиозных масштабах, происходит с потоками электронов, испускаемых Солнцем, когда они попадают в магнитное поле Земли.

Фиг. 14. Измерение отношения е/mдля электронов.

Катушки с током создают магнитное поле, перпендикулярное плоскости рисунка.

Применения катапультирующих сил

Катапультирующие силы вращают валы электродвигателей; с их помощью работают амперметры; они препятствуют вращению роторов электрических генераторов; сортируют изотопы атомов; не дают сбиться с пути пучку частиц в циклотроне и дают возможность измерить величину отношения elm у атомных частиц. Сначала мы кратко обсудим их «технические» применения, а затем «атомные»,

Задача 1. Вводная к теме «Катапультирующие силы»

Примечание. При решении задач пользуйтесь следующими правилами для определения направления магнитных полей (стрелки отмечают направление, в котором будет двигаться северный полюс магнита (N-полюс):

а) Силовые линии идут от северного полюса к южному.

б) Для кругового магнитного поля, окружающего проводник с током, справедливо следующее правило: сожмите пальцы ПРАВОЙ руки в кулак вокруг большого пальца, направив его вдоль тока — сжатые пальцы покажут направление силовых линий (см. гл. 34 ).

в) Направление магнитного поля, создаваемого кольцевым проводником с током, можно определить либо с помощью правила, изложенного в пункте б) , либо по следующему рецепту: сожмите пальцы ПРАВОЙ руки, а большой палец отставьте (как при одобрительном жесте «на большой»); держите руку так, чтобы согнутые пальцы указывали направление течения тока по витку, тогда большой палец покажет направление магнитного поля в центре катушки. (Фактически большой палец меняется ролями с остальными пальцами: когда он показывает направление тока в прямолинейной проволоке, то прочие пальцы согнуты подобно замкнутым силовым линиям кругового поля.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Роджерс читать все книги автора по порядку

Эрик Роджерс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра отзывы


Отзывы читателей о книге Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра, автор: Эрик Роджерс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x