Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать
- Название:Почему Е=mc²? И почему это должно нас волновать
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2016
- Город:Москва
- ISBN:978-5-00057-950-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать краткое содержание
Книга будет полезна всем, кто интересуется устройством мира.
Почему Е=mc²? И почему это должно нас волновать - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В действительности мы уже почти добрались до цели. Смысл всех этих математических выкладок состоит в том, что они позволяют определить, в какой степени вектор импульса указывает направление в пространстве и времени по отдельности. Для начала давайте вспомним, как мы поступали с вектором импульса в трехмерном пространстве. Рис. 11 поможет нам представить себе эту ситуацию. Трехмерный вектор импульса ориентирован в ту же сторону, что и стрелка на рисунке, поскольку он указывает в том направлении, в котором движется шар. Разница лишь в том, что изменится длина вектора, потому что нам необходимо умножить длину стрелки на массу шара и разделить на временной интервал. Аналогичная ситуация складывается и для четырехмерного вектора. Теперь вектор импульса указывает направление в пространстве-времени, в котором движется шар, что соответствует направлению стрелки на рис. 12. В этом случае для получения вектора импульса нам следует изменить масштаб длины стрелки, но на сей раз раз мы должны умножить ее на массу шара и разделить на инвариантную величину ∆ s/c (которая, как мы продемонстрировали выше, равна ∆ t/ γ). Если вы внимательно посмотрите на стрелку на рис. 12, то увидите, что, если мы захотим изменить длину на определенную величину, сохранив при этом направление, нужно просто изменить часть, указывающую в направлении x (∆ x ), и часть, указывающую в направлении времени ( c ∆ t ), в одинаковое количество раз. Таким образом, длина части вектора импульса, которая указывает в направлении пространства, представляет собой ∆ x , умноженное на m и деленное на ∆ t/ γ, что можно записать как γ m ∆ x/ ∆ t . Если вспомнить, что v = ∆ x/ ∆ t – это скорость движения объекта в пространстве, то мы получим следующий ответ: часть вектора импульса в пространстве-времени, указывающая в направлении пространства, имеет длину, равную γ mv .
Теперь все становится действительно интересным: вектор импульса в пространстве-времени, который мы только что построили, никак нельзя назвать скучным. Если скорость v нашего объекта намного меньше скорости света c , значение γ оказывается очень близко к единице. В этом случае мы снова получаем старый импульс, а именно – произведение массы на скорость: p = mv . Это очень обнадеживает, так что давайте двигаться дальше. В действительности нам удалось сделать нечто гораздо большее, чем просто преобразовать старый трехмерный импульс в новую четырехмерную структуру. Начнем с того, что мы получили, по-видимому, более точную формулу, поскольку значение γ может быть равным единице, только когда скорость равна нулю.
Но то, что мы увидим, когда рассмотрим часть вектора импульса, указывающую в направлении времени, еще интереснее, чем модифицированная формула p = mv . После всего, что мы уже проделали, нам нетрудно будет выполнить соответствующие расчеты (ответ показан на рис. 13). Длина части нового вектора импульса, которая указывает в направлении времени, равна значению c ∆ t , умноженному на m и деленному на ∆ t/ γ, что представляет собой γ mc .

Рис. 13
Следует помнить, что импульс интересует нас только потому, что он сохраняется. Поэтому мы искали новый четырехмерный импульс, который будет сохраняться в пространстве-времени. Мы можем представить себе совокупность векторов импульса, указывающих в разных направлениях. Они могут отображать, например, импульсы определенного количества частиц, которые должны вот-вот столкнуться. После столкновения образуется новая совокупность векторов импульса, указывающих в других направлениях. Однако закон сохранения импульса гласит, что общая сумма всех новых стрелок должна в точности соответствовать сумме исходных. Это, в свою очередь, означает, что должна сохраняться также общая сумма частей всех стрелок, указывающих в направлении пространства, так же как и сумма частей, указывающих в направлении времени. Таким образом, если мы подсчитаем значения γ mv для каждой частицы, то общая сумма этих значений до столкновения должна быть такой же, как и общая сумма после него. То же самое происходит и с частями вектора импульса, указывающими в направлении времени, только в этом случае сохраняется общая сумма значений γ mc . Похоже, у нас есть два новых закона физики: γ mv и γ mc – это сохраняющиеся величины. Но чему они соответствуют? На первый взгляд во всем этом нет ничего особенного. Если скорость достаточно низкая, то значение γ очень близко к единице, а γ mv превращается просто в mv . Таким образом, в итоге все тот же закон сохранения импульса. Это обнадеживает, поскольку мы рассчитывали, что нам удастся прийти к выводам, которые признали бы физики викторианской эпохи. Безусловно, Брюнель и другие великие инженеры XIX столетия прекрасно обходились без пространства-времени, поэтому наше новое определение импульса должно давать почти те же ответы, что и во времена промышленной революции, – при условии, что объекты перемещаются со скоростью, далекой от скорости света. В конце концов, Клифтонский подвесной мост не упал после того, как Эйнштейн сформулировал теорию относительности.
Что мы можем сказать о сохранении γ mc ? Поскольку c – это универсальная константа, значение которой всегда одинаково, закон сохранения γ mc равносилен утверждению, что масса сохраняется. Этот вывод не стал для нас большой неожиданностью, поскольку согласуется с интуицией, хотя довольно интересно, что он появился как будто ниоткуда. Например, можно утверждать, что после сгорания угля в печи масса пепла (плюс масса вещества, вылетевшего через дымоход) должна быть равна массе угля до его сжигания. Тот факт, что значение γ не равно в точности единице, кажется несущественным, и у нас может возникнуть соблазн двигаться дальше, удовлетворившись тем, что мы и так уже многого добились. Мы определили импульс таким образом, что он представляет собой значимую величину в пространстве-времени, благодаря чему внесли коррективы (в большинстве случаев незначительные) в определение импульса, принятое в XIX столетии, и в то же время вывели закон сохранения массы. На что еще мы могли рассчитывать?
Нам понадобилось достаточно много времени, чтобы добраться до этого момента, но нас все же ждет неожиданный финал этого повествования. Мы более внимательно проанализируем ту часть вектора импульса, который указывает направление во времени, а сделав это, чудесным образом выведем самую знаменитую формулу Эйнштейна. Мы с вами проделали большой путь, и вы узнали многое из того, что должен знать профессиональный физик о четырехмерных векторах и пространстве Минковского. Теперь мы готовы к кульминации.
Читать дальшеИнтервал:
Закладка: