Дэйв Голдберг - Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса
- Название:Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2015
- Город:Москва
- ISBN:978-5-17-090528-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэйв Голдберг - Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса краткое содержание
Можно ли создать устройство для мгновенной передачи информации? Что будет, если Землю засосет в черную дыру? Что не рассказывают на школьных уроках о времени и пространстве? Читайте, и вы узнаете ответы на эти вопросы. Это понятно, увлекательно, это может быть смешно — именно так вы теперь будете думать о физике.
Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Человек излишне чувствительный (например, я) на этом месте утратит благоразумие и поднимет крик, что большая часть вашего списка, а то и весь он целиком состоит исключительно из белых мужчин, причем покойников. После нескольких минут нервного мычания и хмыканья вы наконец назовете Мари Кюри, которая, как вам помнится, открыла радиоактивность и первой в истории дважды удостоилась Нобелевской премии — после нее этот рекорд держался полвека. Между прочим, рано вздыхать с облегчением: все равно стыдно, что вы вызвали ее со скамейки запасных, с нее надо было начинать.
Однако эта глава не о ней — и это тоже хорошо, поскольку я и сам из домоседов и поэтому исчерпал свой словарь футбольных терминов. Ну или баскетбольных. Неважно.

Эта глава — и, честно говоря, все разговоры о симметрии как таковой — посвящена моему любимому математику Амалии Эмми Нётер. Большинство поклонников популярной физики и даже студентов-физиков никогда не слышали об этом титане нашей научной эры. И это никуда не годится, поскольку за весь XX век лишь считаные единицы внесли такой колоссальный вклад в понимание того, как на самом деле устроена вселенная. Эмми Нётер и ее главное открытие — теорема Нётер — раз и навсегда объяснили, каковы роль и значение симметрии.
Эмми Нётер грозит подорвать систему академического образования
История Эмми Нётер во многом повторяет историю Эйнштейна. Оба родились в конце XIX века в еврейских семьях на территории нынешней Германии. Он в Ульме, в Вюртемберге, она — в Эрлангене в Баварии. Отец Эмми был выдающимся математиком и работал в Эрлангенском университете, и она решила пойти по его стопам.
Это была задача не из простых. В немецкие университеты в самом начале XX века девушек практически не брали — не разрешали ни присутствовать на занятиях, причем эту политику горячо поддерживало большинство преподавателей, ни даже держать экзамены экстерном. В 1898 году факультетский совет в Эрлангене даже вынес постановление, что допускать на занятие женщин — это подрыв всей системы академического образования. Гораздо проще было пойти по пути, который открылся перед Эмми после окончания школы: у девушки были прекрасные способности к языкам, и она вполне могла преподавать английский и французский.
Однако Нётер решила добиться того, чтобы пройти полный курс университетской математики вольнослушательницей, а в 1903 году сумела сдать университетские экзамены в нюрнбергской гимназии и была официально зачислена в Эрлангенский университет: туда как раз разрешили брать девушек. Ее научным руководителем был Пауль Гордан, близкий сотрудник ее отца Макса Нётера. Подобно многим другим чистым математикам той эпохи, Гордан занимался разработками в новооткрытой области квантовой механики и открыл коэффициенты Клебша-Гордана, при помощи которых описывают спин и орбитальное движение электрона.
В 1908 Нётер получила степень доктора философии, после чего ей пришлось изрядно потрудиться, чтобы найти себе официальную должность в академической среде — и это несмотря на очевидные таланты. Как известно, с подобными же трудностями столкнулся и Эйнштейн — и в результате прозябал в швейцарском патентном бюро, пока не прославился на весь мир в 1905 году, который так и назвали — «Чудесный год». Между тем Нётер провела следующие восемь лет на должности научного сотрудника без жалованья при Эрлангенском университете и время от времени подменяла отца на лекциях.
Эмми Нётер специализировалась на математических инвариантах. Поскольку мы сталкиваемся с инвариантами впервые, а для понимания сути симметрии они очень важны, приведу простое определение — это первое определение чего-то помимо симметрии, с которым я вас здесь познакомлю.
Инвариант— это число, которое не меняется в результате преобразования.
Преобразование — это что-то вроде вращения или перемещения системы с места на место. Инварианты — это контрапункт симметрий. Симметрия описывает, какого рода преобразования можно применить к системе, не меняя ее, а инвариант — это само то, что, собственно, не меняется.
Чтобы еще сильнее вас запутать, позвольте привести пример того, что, как выясняется, не является инвариантом при определенного рода преобразованиях: это продолжительность. Возьмите за основу что-нибудь незыблемое — тиканье часов, биение сердца, вращение Земли вокруг Солнца. В том, как воспринимается течение времени, важную роль играет психология, однако на рациональном уровне большинство из нас согласны, что должна быть какая-то абсолютная мера того, сколько времени проходит между двумя событиями.
А вот и нет.
Как мы увидим в следующей главе, одно из самых странных следствий из специальной теории относительности состоит в том, что промежуток времени между двумя событиями очень даже зависит от личности того, кто его измеряет. Классический пример — пилот звездолета, летящего с околосветовой скоростью, будет стареть медленнее нормального. Поставьте ему кардиомонитор и измерьте частоту сердцебиения по пути. Если пилот летит со скоростью больше 99 % скорости света, кардиомонитор на борту звездолета покажет 100 ударов в минуту, а внешнее измерение покажет, может быть, всего два удара в минуту.
В ходе подобного измерительного эксперимента не меняется ничего, кроме точки зрения — а значения при этом получаются совсем разные. Как сказали бы профессионалы, «Продолжительность не есть инвариант состояния движения». Поскольку мы обычно перемещаемся со скоростью, которая составляет ничтожную долю скорости света, то в нормальной обстановке вообще не можем наблюдать этот эффект.
Но на самом деле инвариантных величин очень много. Например, как мы убедились, сила тяжести обратно пропорциональна квадрату расстояния между двумя телами. Однако величина этой силы совершенно не зависит от направления. Например, в Канберре вы весите ровно столько же, сколько в Канзасе.
Нётер написала об инвариантах диссертацию и изучала эту тему во время последующей работы в Эрлангене. Если вы уже сообразили, почему именно Нётер поняла, каково значение симметрий в законах физики, вы не одиноки.
В 1915 году Эйнштейн обнародовал общую теорию относительности. Не тратя лишних слов, скажу, что это была одна из самых революционных научных идей в истории человечества, которая преобразила наши представления о том, как устроены пространство, время и гравитация. Теория была немыслимо изящна и глубоко симметрична, однако никто на самом деле не понимал, на чем она держится. Выдающиеся математики Давид Гильберт и Феликс Клейн в 1915 году пригласили Нётер в Геттингенский университет, чтобы помочь выявить скрытые симметрии.
Читать дальшеИнтервал:
Закладка: