Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики
- Название:Новый ум короля: О компьютерах, мышлении и законах физики
- Автор:
- Жанр:
- Издательство:Едиториал УРСС
- Год:2003
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики краткое содержание
Монография известного физика и математика Роджера Пенроуза посвящена изучению проблемы искусственного интеллекта на основе всестороннего анализа достижений современных наук. Возможно ли моделирование разума? Чтобы найти ответ на этот вопрос, Пенроуз обсуждает широчайший круг явлений: алгоритмизацию математического мышления, машины Тьюринга, теорию сложности, теорему Геделя, телепортацию материи, парадоксы квантовой физики, энтропию, рождение Вселенной, черные дыры, строение мозга и многое другое.
Книга вызовет несомненный интерес как у специалистов гуманитарных и естественнонаучных дисциплин, так и у широкого круга читателей.[1]
Новый ум короля: О компьютерах, мышлении и законах физики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Напомним, чему учил нас Минковский. Мы имеем (в отсутствие гравитации) пространство-время, наделенное особого рода мерой «расстояния» между точками: если мы имеем в пространстве-времени мировую линию, описывающую траекторию какой-нибудь частицы, то «расстояние» в смысле Минковского, измеряемое вдоль этой мировой линии, дает время , реально прожитое частицей. (В действительности, в предыдущем разделе мы рассматривали это «расстояние» только для тех мировых линий, которые состоят из прямолинейных отрезков — но приведенное выше утверждение справедливо и по отношению к искривленным мировым линиям, если «расстояние» измеряется вдоль кривой.) Геометрия Минковского считается точной, если нет гравитационного поля, т. е. если у пространства-времени нет кривизны. Но при наличии гравитации мы рассматриваем геометрию Минковского уже лишь как приближенную — аналогично тому, как плоская поверхность лишь приблизительно соответствует геометрии искривленной поверхности. Вообразим, что, изучая искривленную поверхность, мы берем микроскоп, дающий все большее увеличение — так, что геометрия искривленной поверхности кажется все больше растянутой. При этом поверхность будет нам казаться все более плоской. Поэтому мы говорим, что искривленная поверхность имеет локальное строение евклидовой плоскости [128]. Точно так же мы можем сказать, что при наличии гравитации пространство-время локально описывается геометрией Минковского (которая есть геометрия плоского пространства-времени), но мы допускаем некоторую «искривленность» на более крупных масштабах (рис. 5.29).
Рис. 5.29.Картина искривленного пространства-времени
В частности, как и в пространстве Минковского, любая точка пространства-времени является вершиной светового конуса — но в данном случае эти световые конусы расположены уже не одинаково. В главе 7 мы познакомимся с отдельными моделями пространства-времени, в которых явно видна эта неоднородность расположения световых конусов (см. рис. 7.13, 7.14). Мировые линии материальных частиц всегда направлены внутрь световых конусов, а линии фотонов — вдоль световых конусов. Вдоль любой такой кривой мы можем ввести «расстояние» в смысле Минковского, которое служит мерой времени, прожитого частицами так же, как и в пространстве Минковского. Как и в случае искривленной поверхности, эта мера «расстояния» определяет геометрию поверхности, которая может отличаться от геометрии плоскости.
Геодезическим линиям в пространстве-времени теперь можно придать интерпретацию, аналогичную интерпретации геодезических линий на двумерных поверхностях, учитывая при этом различия между геометриями Минковского и Евклида. Таким образом, наши геодезические линии в пространстве-времени представляют собой не (локально) кратчайшие кривые, а наоборот — кривые, которые (локально) максимизируют «расстояние» (т. е. время) вдоль мировой линии. Мировые линии частиц, свободно перемещающиеся под действием гравитации, согласно этому правилу действительно являются геодезическими. В частности, небесные тела, движущиеся в гравитационном поле, хорошо описываются подобными геодезическими линиями. Кроме того, лучи света (мировые линии фотонов) в пустом пространстве так же служат геодезическими линиями, но на этот раз — нулевой «длины» [129]. В качестве примера я схематически нарисовал на рис. 5.30 мировые линии Земли и Солнца. Движение Земли вокруг Солнца описывается «штопорообразной» линией, навивающейся вокруг мировой линии Солнца. Там же я изобразил фотон, приходящий на Землю от далекой звезды. Его мировая линия кажется слегка «изогнутой» вследствие того, что свет (по теории Эйнштейна) на самом деле отклоняется гравитационным полем Солнца.
Рис. 5.30.Мировые линии Земли и Солнца. Световой луч от далекой звезды отклоняется Солнцем
Нам необходимо еще выяснить, каким образом ньютоновский закон обратных квадратов может быть включен (после надлежащей модификации) в общую теорию относительности Эйнштейна. Обратимся еще раз к нашей сфере из материальных частиц, падающей в гравитационном поле. Напомним, что если внутри сферы заключен только вакуум, то, согласно теории Ньютона, объем сферы первоначально не изменяется; но если внутри сферы находится материя общей массой М , то происходит сокращение объема, пропорциональное М . В теории Эйнштейна (для малой сферы) правила в точности такие же, за исключением того, что не все изменение объема определяется массой М ; существует (обычно очень малый) вклад от давления , возникающем в окруженном сферой материале.
Полное математическое выражение для кривизны четырехмерного пространства-времени (которая должна описывать приливные эффекты для частиц, движущихся в любой данной точке по всевозможным направлениям) дается так называемым тензором кривизны Римана . Это несколько сложный объект; для его описания необходимо в каждой точке указать двадцать действительных чисел. Эти двадцать чисел называются его компонентами . Различные компоненты соответствуют различным кривизнам в различных направлениях пространства-времени. Тензор кривизны Римана обычно записывают в виде R tjkl , но так как мне не хочется объяснять здесь, что означают эти субиндексы (и, конечно, что такое тензор), то я запишу его просто как:
РИМАН .
Существует способ, позволяющий разбить этот тензор на две части, называемые, соответственно, тензором ВЕЙЛЯ и тензором РИЧЧИ (каждый — с десятью компонентами). Условно я запишу это разбиение так:
РИМАН = ВЕЙЛЬ + РИЧЧИ .
(Подробная запись тензоров Вейля и Риччи для наших целей сейчас совершенно не нужна.) Тензор Вейля ВЕЙЛЬ служит мерой приливной деформации нашей сферы из свободно падающих частиц (т. е. изменения начальной формы, а не размеров); тогда как тензор Риччи РИЧЧИ служит мерой изменения первоначального объема [130]. Напомним, что ньютоновская теория гравитации требует, чтобы масса , содержащаяся внутри нашей падающей сферы, была пропорциональна этому изменению первоначального объема. Это означает, что, грубо говоря, плотность массы материи — или, что эквивалентно, плотность энергии (так как Е = mc 2 ) — следует приравнять тензору Риччи.
Читать дальшеИнтервал:
Закладка: