Ричард Фейнман - 9. Квантовая механика II

Тут можно читать онлайн Ричард Фейнман - 9. Квантовая механика II - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    9. Квантовая механика II
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 9. Квантовая механика II краткое содержание

9. Квантовая механика II - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)

9. Квантовая механика II - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы видим что плотность тока пропорциональна электрическому полю такие - фото 72

Мы видим, что плотность тока пропорциональна электриче­скому полю; такие полупроводниковые материалы подчиняются закону Ома. Коэффициент пропорциональности между j и x, или проводимость s, равен

Для материалов n типа проводимость в общем не зависит от температуры - фото 73

Для материалов n -типа проводимость в общем не зависит от температуры. Во-первых, общее число основных носителей N n определяется главным образом плотностью доноров в кристалле (пока температура не настолько низка, чтобы позволять атомам захватить чересчур много носителей), а, во-вторых, среднее время от соударения к соударению, t n, регулируется главным образом плотностью атомов примеси, а она, ясное дело, от тем­пературы не зависит.

Те же рассуждения можно приложить к веществу p-типа, переменив только значения параметров, которые появляются в (12.7). Если в одно и то же время имеется сравнимое количе­ство отрицательных и положительных носителей, то вклады носителей обоего рода надо сложить. Полная проводимость определится из

Для очень чистых веществ N р и N n примерно равны Они будут меньше чем у - фото 74

Для очень чистых веществ N р и N n примерно равны. Они будут меньше, чем у материалов с примесями, так что и прово­димость будет меньше. Кроме того, они будут резко меняться с температурой (по закону 9 Квантовая механика II - изображение 75), так что проводи­мость с температурой может меняться чрезвычайно быстро.

§ 3. Эффект Холла

Конечно, это очень странно, что в веществе, где единствен­ными более или менее свободными объектами являются элект­роны, электрический ток вызывается дырками, которые ведут себя как положительные частицы. Мы хотим поэтому описать опыт, который довольно явно свидетельствует, что знак носи­теля электрического тока может быть положительным. Пусть имеется брусок, изготовленный из полупроводящего вещества (или из металла), и мы прикладываем к нему электрическое поле, чтобы вызвать ток в каком-то направлении, скажем в го­ризонтальном (фиг. 12.6).

Фиг 126 Эффект Холла возникает при действии магнитных сил на носители - фото 76

Фиг. 12.6. Эффект Холла возникает при действии магнитных сил на носи­тели.

Сверху и снизу указаны знаки заряда при положительных и отрицательных (в скобках) носителях.

Пусть мы также приложили к бруску магнитное поле под прямым углом к току, скажем, чтобы оно уходило в плоскость чертежа. Движущиеся носители будут испытывать действие магнитной силы q ( vXВ). А так как средняя скорость дрейфа направлена либо направо, либо на­лево (смотря по тому, каков знак заряда носителя), то дейст­вующая на носители средняя магнитная сила будет направлена либо вверх, либо вниз. Впрочем, нет! При выбранных нами направлениях тока и магнитного поля магнитная сила, дейст­вующая на движущийся заряд, всегда будет направлена вверх. Положительные заряды, движущиеся в направлении j (направо), подвергнутся действию силы, направленной вверх. А если ток переносится отрицательными зарядами, то они будут двигаться влево (при том же знаке тока проводимости) и также испыты­вают действие силы, направленной кверху. Но после установ­ления тока никакого движения носителей вверх не будет, по­тому что ток может течь только слева направо. Вначале не­сколько зарядов могут потечь вверх, образовав вдоль верхнего края полупроводника поверхностную плотность заряда и оста­вив равную по величине и обратную по знаку поверхностную плотность заряда на нижней грани кристалла. Заряды на верх­ней и нижней поверхностях будут накапливаться до тех пор, пока электрические силы, с которыми они действуют на движу­щиеся заряды, в точности погасят (в среднем) действие магнит­ной силы, и установившийся ток пойдет по горизонтали. Заряды на верхней и нижней поверхностях создадут по вертикали попе­рек кристалла разность потенциалов, которую можно измерить высокоомным вольтметром (фиг. 12.7).

Фиг 127 Измерение эффекта Холла Знак разности потенциалов отмечаемый - фото 77

Фиг. 12.7. Измерение эффекта Холла.

Знак разности потенциа­лов, отмечаемый вольтметром, будет зависеть от знака носите­лей зарядов, ответственных за ток.

Когда впервые ставились эти опыты, считалось, что знак разности потенциалов окажется отрицательным, как и поло­жено отрицательным электронам проводимости. Поэтому все были очень удивлены, обнаружив, что у некоторых веществ знак разности потенциалов совсем не тот. Дело выглядело так, словно носитель тока — частица с положительным знаком. Из наших рассуждений о примесных полупроводниках ясно, что полупроводник n -типа обязан вызывать знак разности потен­циалов, свойственный отрицательным носителям, а полупро­водник p -типа должен вызывать разность потенциалов противо­положного знака, поскольку ток создается положительно заря­женными дырками.

Открытие аномального знака разности потенциалов в эффек­те Холла сначала было сделано не в полупроводнике, а в ме­талле. Считалось, что уж в металлах-то проводимостью всегда занимаются электроны, и вдруг оказалось, что у бериллия знак разности потенциалов не тот. Теперь ясно, что в металлах, как и в полупроводниках, при некоторых обстоятельствах «объектами», ответственными за проводимость, оказываются дырки. Хотя в конечном счете в кристалле движутся электроны, тем не менее соотношение между импульсом и энергией и отклик на внешнее поле в точности такие, каких следовало бы ожидать, если бы электрический ток осуществлялся положительными частицами.

Поглядим, нельзя ли качественно оценить, какая разность потенциалов может быть получена при эффекте Холла. Если ток через вольтметр (см. фиг. 12.7) пренебрежимо мал, то заряды внутри полупроводника должны двигаться слева направо и вертикальная магнитная сила должна в точности гаситься вертикальным электрическим полем, которое мы обозначим x ┴(индекс означает «поперечный»). Чтобы это электрическое поле уничтожало магнитные силы, должно быть

Припоминая связь между скоростью дрейфа и плотностью электрического тока - фото 78

Припоминая связь между скоростью дрейфа и плотностью электрического тока, приведенную в (12.6), получаем

Разность потенциалов между верхом и низом кристалла равна естественно этой - фото 79

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




9. Квантовая механика II отзывы


Отзывы читателей о книге 9. Квантовая механика II, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x