Ричард Фейнман - 9. Квантовая механика II
- Название:9. Квантовая механика II
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 9. Квантовая механика II краткое содержание
9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Разность потенциалов между верхом и низом кристалла равна, естественно, этой самой напряженности электрического поля, умноженной на высоту кристалла. Напряженность электрического поля в кристалле x ┴пропорциональна плотности тока и напряженности магнитного поля. Множитель пропорциональности 1/qN называется коэффициентом Холла и обычно изображается символом R H . Коэффициент Холла зависит просто от плотности носителей при условии, что носители одного знака находятся в явном большинстве. Поэтому измерение эффекта Холла дает удобный способ опытным путем определять плотность носителей в полупроводнике.
§ 4. Переходы между полупроводниками
Теперь мы хотим выяснить, что получится, если взять два куска германия или кремния с неодинаковыми внутренними характеристиками, скажем с разным количеством примеси, и приложить их друг к другу, чтобы возник «переход». Начнем с того, что именуется p—n -переходом, когда с одной стороны границы стоит германий p -типа, а с другой — германий n -типа (фиг. 12.8).
Фиг. 12.8. p — n-переход.
Практически не очень удобно прикладывать друг к другу два разных куска германия и добиваться однородности контакта между ними на атомном уровне. Вместо этого переходы делают из одного кристалла, обработанного в разных концах по-разному. Один из приемов состоит в том, чтобы после того, как из расплава была выращена половинка кристалла, добавить в оставшийся расплав подходящую присадку. Другой способ — это нанести на поверхность немного примесного элемента и затем подогреть кристалл, чтобы часть атомов примеси продиффундировала в тело кристалла. У сделанных такими способами переходов нет резкой границы, хотя сами границы могут быть сделаны очень тонкими — до 10 -4 см. Для наших рассуждений мы вообразим идеальный случай, когда эти две области кристалла с разными свойствами резко разграничены. В n -области p—n -перехода имеются свободные электроны, которые могут переходить с места на место, а также фиксированные донорные узлы, которые уравновешивают полный электрический заряд. В p -области имеются свободные дырки, тоже переходящие с места на место, и равное количество отрицательных акцепторных узлов, гасящих полный заряд. Но в действительности такое описание положения вещей годится лишь до тех пор, пока между материалами не осуществлен контакт. Как только материалы соединятся, положение на границе изменится. Теперь, достигнув границы в материале n -типа, электроны не отразятся обратно, как это было бы на свободной поверхности, а смогут прямо перейти в материал p -типа. Часть электронов из материала n -типа поэтому будет стремиться проскользнуть в материал p -типа, где электронов меньше. Но так длиться без конца не может, потому что по мере того, как в n -области будут теряться электроны, ее заряд начнет становиться все более положительным, пока не возникнет электрическое напряжение, которое затормозит диффузию электронов в p -область. Подобным же образом положительные носители из материала p -типа смогут проскальзывать через переход в материал n -типа, оставляя позади себя избыток отрицательного заряда. В условиях равновесия полный ток диффузии должен будет равняться нулю. Это произойдет благодаря возникновению электрических полей, которые установятся таким образом, чтобы возвращать положительные носители обратно в p -область.
Оба описанных нами процесса диффузии продолжаются одновременно, и оба, как видите, действуют в таком направлении, чтобы материал n -типа зарядить положительно, а материал p -типа — отрицательно. Вследствие конечной проводимости полупроводящих материалов изменение потенциала между p -областью и n -областью произойдет в сравнительно узком участке близ границы; в основной же массе каждой области потенциал будет однороден. Проведем перпендикулярно границе ось х. Тогда электрический потенциал будет меняться с х так, как показано на фиг. 12.9, б .
Фиг. 12,9. Электрический потенциал и плотности носителей в полупроводниковом переходе без смещающего напряжения.
На фиг. 12.9, в показано ожидаемое изменение плотности N n n -носителей и плотности N p p -носителей. Вдали от перехода плотности носителей N p и N n должны быть попросту равны той равновесной плотности, которой положено устанавливаться в определенном бруске того же материала при той же температуре. (Фиг. 12.9 вычерчена для перехода, в котором в материале p -типа примеси больше, чем в материале n -типа.) Из-за перепада потенциала на переходе положительным носителям приходится взбираться на потенциальный холм, чтобы попасть в p -область. Это означает, что в условиях равновесия в материале re-типа будет меньше положительных носителей, чем в материале p -типа. Можно ожидать (вспомните законы статистической механики), что отношение количеств носителей p -типа в обеих областях будет даваться уравнением
Произведение q p V в числителе показателя экспоненты — это как раз та энергия, которая требуется, чтобы пронести заряд q p сквозь разность потенциалов V.
Точно такое же уравнение существует и для плотностей носителей n -типа:
Если мы знаем равновесные плотности в каждом из двух материалов, то любое из этих уравнений даст нам разность потенциалов на переходе.
Заметьте, что для того, чтобы (12.10) и (12.11) давали одинаковые значения разности потенциалов V , произведение N p N n должно быть в p -области и в n -области одним и тем же.
Фаг. 12.11. Распределение потенциала вдоль транзистора, если не приложено напряжение.
(Вспомните, что q n =- q p .) Но мы еще раньше видели, что это произведение зависит только от температуры и от ширины энергетической щели кристалла. Если обе части кристалла находятся при одинаковой температуре, оба уравнения будут совместны, давая одинаковое значение разности потенциалов.
Читать дальшеИнтервал:
Закладка: