Ричард Фейнман - 9. Квантовая механика II
- Название:9. Квантовая механика II
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 9. Квантовая механика II краткое содержание
9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В ядерной физике можно встретиться с другим подобным случаем. В атомном ядре протоны и нейтроны очень сильно взаимодействуют друг с другом. Но и при этом модель независимых частиц опять полезна для анализа структуры ядра. Сперва было открыто экспериментально, что ядра особо устойчивы, если в них содержится определенное число нейтронов — а именно 2, 8, 20, 28, 50, 82. Ядра, содержащие в таком же количестве протоны, тоже особенно устойчивы. Поскольку вначале объяснения этим числам не было, их назвали «магическими числами» ядерной физики. Хорошо известно, что нейтроны и протоны друг с другом сильно взаимодействуют; поэтому люди были чрезвычайно поражены, когда выяснилось, что модель независимых частиц предсказывает оболочечное строение ядра, причем сами собой возникают несколько первых магических чисел. Модель эта предполагала, что каждый нуклон (протон или нейтрон) движется в центральном потенциальном поле, создаваемом средним влиянием всех прочих нуклонов. Однако модели не удавалось верно предсказать другие магические числа. Но затем Мария Майер и независимо Йенсен с сотрудниками открыли, что, принимая модель независимых частиц и добавляя только поправку на так называемое «спин-орбитальное взаимодействие», можно в этой усовершенствованной модели получить все магические числа. (Спин-орбитальное взаимодействие приводит к тому, что энергия нуклона оказывается ниже, если его спин направлен туда же, куда направлен его орбитальный момент количества движения в ядре.) Теория дает даже больше — ее картина так называемой «оболочечной структуры» ядра позволяет предсказывать некоторые характеристики ядер и ядерных реакций.
Приближение независимых частиц оказалось полезным для широкого круга явлений — от физики твердого тела до химии, от биологии до ядерной физики. Такое приближение часто очень грубо, но оно в состоянии помочь нам понять, отчего бывают особо устойчивые условия — отчего возникают оболочки. Но поскольку оно опускает всю сложность взаимодействий между индивидуальными частицами, нас не должно удивлять, что часто ему не удается правильно предсказать многие важные детали.
* Отношение сторон прямоугольника, который можно разбить на квадрат и на подобный ему прямоугольник.
* Когда имеется пара состояний (с разными распределениями амплитуд) с той же энергией, мы говорим, что эта пара состояний «вырождена». Заметьте, что энергией E 0 -А могут обладать четыре электрона.
* Могло бы показаться, что при четном N есть N+1 состояний. Это не так, ибо s = ±.N/2 дают одно и то же состояние.
* Квазичастицы обсуждаемого типа могут действовать и как бозе-и как ферми-частицы; и, как и у свободных частиц, частицы с целым спином суть бозоны, с полуцелым—фермионы. «Магнон» символизирует, что электрон со спином, направленным вверх, перевертывается вниз. Спин меняется на единицу. Значит, у магнона спин целый и он — бозон.
* Основное состояние здесь на самом деле «вырождено». Существуют и другие состояния с той же энергией, например, когда все спины смотрят вниз или в любую другую сторону. Но наложение самого слабого внешнего поля в направлении z снабдит все эти состояния различной энергией, и истинным основным состоянием окажется как раз то, которое мы выбрали.
Глава 14
ЗАВИСИМОСТЬ АМПЛИТУД ОТ МЕСТА
§ 1. Как меняются амплитуды вдоль прямой
§ 2. Волновая функция
§ 3. Состояния с определенным импульсом
§ 4. Нормировка состояний с определенной координатой х
§ 5. Уравнение Шредингера
§ 6. Квантованные уровни энергии
§ 1. Как меняются амплитуды вдоль прямой
Выясним теперь, как в квантовой механике амплитуды вероятности меняются в пространстве. В некоторых предыдущих главах у вас могло возникнуть смутное чувство, что кое о чем мы умалчиваем. Например, когда мы толковали о молекуле аммиака, мы решили описывать ее через два базисных состояния. За одно из них мы выбрали случай, когда атом азота находится «выше» плоскости трех атомов водорода, а в качестве другого базисного состояния выбрали такие условия, когда атом азота стоит «ниже» плоскости трех атомов водорода. Почему же мы выбрали именно эту пару состояний? Почему бы не считать, что атом азота может оказаться либо на расстоянии 2E от плоскости трех атомов водорода, либо на расстоянии 3Е, а может, и 4Е. Ведь атом азота может занимать множество положений. Или, когда шла речь о молекулярном ионе водорода, в котором имеется электрон, распределенный между двумя протонами, мы тоже вообразили два базисных состояния. Одно — когда электрон находится по соседству с протоном № 1, и другое, когда он пребывает в окрестностях протона № 2. Ясно, что многие детали мы упустили. Электрон ведь находится не точно у самого протона № 2, а только в его окрестностях. Он может оказаться и где-то повыше протона, и где-то пониже, и где-то слева, и где-то справа.
Мы намеренно избегали уточнения таких деталей. Мы говорили, что нас интересуют только определенные стороны проблемы, и воображали, что если уж электрон находится поблизости от протона № 1, то он принимает некоторое довольно определенное положение.
На самом деле в этих условиях вероятность обнаружить электрон обладает каким-то определенным распределением в пространстве вблизи протона. Но нас такие детали не заботили. Можно представить дело и иначе. Когда мы рассматривали молекулярный ион водорода, то избрали приближенный подход, описывая положение вещей на языке двух базисных состояний. В действительности же таких состояний уйма. Электрон может попасть вблизи протона в свое наинизшее, или основное, состояние, но имеется еще и множество возбужденных состояний. В каждом из них электрон как-то по-особому распределен вблизи протона. Эти возбужденные состояния мы игнорировали, говоря, что нас интересуют лишь условия при наинизшей энергии. Но как раз они-то, эти возбужденные состояния, и приводят к тому, что возможны различные распределения электрона вокруг протона. Если мы хотим детально описать молекулярный ион водорода, то следует принять во внимание и эти прочие допустимые базисные состояния. Это можно сделать многими способами, и один из них — детальнее рассмотреть состояния, когда расположение электрона в пространстве описывается более тщательно.
Мы уже достаточно подготовлены, чтобы заняться более трудоемкой процедурой, которая позволит нам обстоятельнее говорить о местоположении электрона, задавая амплитуду вероятности того, что он будет обнаружен в каком угодно месте в данной ситуации. Эта более полная теория позволит подкрепить те приближения, которыми мы раньше пользовались. Наши прежние уравнения в каком-то смысле смогут быть выведены как своего рода приближения к более полной теории. Вас может удивить, почему мы не начали прямо с более полной теории и не делали приближений по мере движения вперед. Но мы считали, что, отправившись от приближения двух состояний и постепенно подходя к более полной теории, вам будет легче достичь понимания всей механики квантовой механики. Наш подход, по-видимому, противоположен тому, который вы найдете во многих книгах.
Читать дальшеИнтервал:
Закладка: