Ричард Фейнман - 9. Квантовая механика II
- Название:9. Квантовая механика II
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 9. Квантовая механика II краткое содержание
9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Кроме того, в гл. 11 мы предположили, что амплитуды С(х n ) обязаны меняться во времени так, как положено по гамильтонову уравнению (11.3). В нашем новом обозначении это уравнение имеет вид
Два последних слагаемых в правой части представляют такой процесс, когда электрон, находившийся возле атома (n +1) или возле атома (n- 1), окажется возле атома ( n ).
Мы нашли, что (14.7) имеет решения, отвечающие состояниям определенной энергии. Мы записывали их в виде
У состояний с низкой энергией длины волн велики (k мало) и энергия связана с k формулой
или, если выбрать нуль энергии так, чтобы было (Е 0 - 2 А)= 0, то энергия дается формулой (14.1).
Посмотрим, что бы произошло, если бы мы позволили расстоянию b между атомами решетки стремиться к нулю, сохраняя волновое число постоянным. Если бы больше ничего не случилось, то последнее слагаемое в (14.9) обратилось бы просто в нуль, и никакой физики бы не осталось. Но предположим, что А и b вместе изменяются так, что при стремлении b к нулю произведение Ab 2 поддерживается постоянным: с помощью (14.2) мы запишем Аb 2 в виде постоянной h 2 /2m эфф . При этом (14.9) не изменится, но что произойдет с дифференциальным уравнением (14.7)?
Перепишем сперва (14.7) так:
При нашем выборе Е 0первое слагаемое выпадет. Далее, представим себе непрерывную функцию С ( х ) , которая плавно проходит через значения С ( х n )в точках х n . Когда расстояние b стремится к нулю, точки х n сближаются все теснее и теснее и [если С ( х )меняется достаточно плавно] величина в скобках попросту пропорциональна второй производной С ( х ) . Можно написать (в чем легко убедиться, разложив в ряд Тэйлора каждый член) равенство
Тогда в пределе, когда b стремится к нулю, а b 2 A поддерживается равным h2 /2m эфф , уравнение (14.7) переходит в
Перед нами уравнение, утверждающее, что скорость изменения С ( х ) — амплитуды того, что электрон будет обнаружен в х— зависит от амплитуды того, что электрон будет обнаружен в близлежащих точках так, что эта скорость пропорциональна второй производной амплитуды по координате.
Правильное квантовомеханическое уравнение движения электрона в пустом пространстве впервые было открыто Шредингером. При движении по прямой оно имеет вид (14.12); надо только m эффзаменить на m — массу электрона в пустом пространстве. При движении по прямой в пустом пространстве уравнение Шредингера имеет вид
Мы не хотим, чтобы вы считали, будто мы сейчас вывели уравнение Шредингера; мы только показываем вам один из способов, каким его можно осмыслить. Когда Шредингер впервые написал его, он привел какой-то вывод, опиравшийся на эвристические доводы и блестящие интуитивные догадки. Некоторые из его доводов были даже неверны, но это не имело значения; важно то, что окончательное уравнение дает правильное описание природы. И цель нашего обсуждения состоит просто в том, чтобы показать вам, что правильное фундаментальное квантовомеханическое уравнение (14.13) имеет ту же самую форму, какая получается в предельном случае электрона, движущегося вдоль цепочки атомов. Это значит, что можно считать, что дифференциальное уравнение (14.13) описывает диффузию амплитуды вероятности от точки к точке вдоль прямой. Иначе говоря, если электрон имеет некоторую амплитуду того, что он будет в одной точке, то чуть позже у него появится амплитуда того, что он будет в близлежащих точках. Уравнение действительно напоминает уравнения диффузии, которыми мы пользовались в начале курса. Но есть и одно важное отличие: мнимый коэффициент перед производной по времени приводит к поведению, в корне отличному от обычной диффузии (например, от диффузии газа, распространяющегося по длинной трубе). Обычная диффузия приводит к действительным экспоненциальным решениям, а решения (14.13) суть комплексные волны.
§ 2. Волновая функция
Чтобы получить некоторое представление о том, как теперь все будет выглядеть, вернемся к самому началу и изучим проблему описания движения электрона по прямой, не рассматривая состояний, связанных с атомами решетки. Мы хотим возвратиться к самому началу и посмотреть, какими представлениями нужно пользоваться, чтобы описать движение свободной частицы в пространстве. Раз нас интересует поведение частицы вдоль континуума точек, то придется иметь дело с бесконечным множеством возможных состояний и, как вы увидите, идеи, которые были развиты для конечного числа состояний, потребуют некоторых технических видоизменений.
Начнем с того, что вектором состояния | х >обозначим состояние, в котором частица расположена в точности в точке с координатой х. Для каждого значения х вдоль прямой — для 1,73, для 9,67, для 10,00 и т. д.— имеется соответствующее состояние. Выберем эти состояния | х >в качестве базисных. Если это сделать для всех точек х прямой, то получится полная совокупность состояний для движения в одном измерении. Теперь положим, что имеется состояние другого рода, скажем |y>, в котором электрон как-то распределен вдоль прямой. Один из способов описать это состояние — задать все амплитуды того, что электрон будет также найден в каждом из базисных состояний | x >. Надо задать бесконечную совокупность амплитуд, по одной для каждого х. Запишем их в виде < x |y>. Каждая из этих амплитуд — комплексное число, и поскольку для каждого значения х существует одно такое число, амплитуда < x |y> является в действительности просто функцией х. Запишем ее также в виде С (х):
Интервал:
Закладка: