Ричард Фейнман - 9. Квантовая механика II
- Название:9. Квантовая механика II
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 9. Квантовая механика II краткое содержание
9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Когда мы обратимся к теме этой главы, вы заметите, что мы нарушаем правило, которому в прошлом неизменно следовали. Какой бы темы мы ни касались, мы всегда пытались более или менее полно представить вам физику дела, указывая как можно полнее, куда ведут эти идеи. Мы стремились наряду с описанием общих следствий теории представить и некоторые характерные детали, чтобы вам было ясно, куда ведет эта теория. А теперь нам придется нарушить это правило. Мы расскажем об амплитудах вероятности пребывания электрона где-то в пространстве и продемонстрируем вам дифференциальные уравнения, которым они удовлетворяют. Но у нас не будет времени углубиться и обсудить многие очевидные выводы, следующие из теории.
Более того, нам даже не удастся связать эту теорию с некоторыми приближенными формулировками, к которым мы раньше прибегали, скажем, когда изучали молекулу водорода или молекулу аммиака. На этот раз придется бросить дело на полпути, не окончив его. Курс наш близится к концу, и хочешь не хочешь, придется обойтись одним только введением в общие представления. Мы укажем связь с тем, о чем говорилось раньше, и, кроме того, некоторые другие подходы к задачам квантовой механики. Надеемся, что этих представлений вам хватит, чтобы потом двинуться самостоятельно и уже по книгам узнать многие выводы из приведенных здесь уравнений. Все-таки нужно оставить кое-что и на будущее.
Вспомним еще раз, что нам известно о том, как электрон может продвигаться вдоль линии атомов. Когда электрон может с какой-то амплитудой перепрыгивать от одного атома к соседнему, то имеются состояния определенной энергии, в которых амплитуда вероятности обнаружить электрон распределяется вдоль решетки в виде бегущей волны. Для длинных волн (малых значений волнового числа К) энергия состояния пропорциональна квадрату волнового числа. Для кристаллической решетки с постоянной b, в которой амплитуда того, что электрон в единицу времени перепрыгнет от одного атома к следующему, равна iA/h, энергия состояния связана с k (при малых kb) формулой
E=Ak 2 b 2 (14.1)
(см. гл. 11, § 1). Мы видели также, что группы таких волн с близкими энергиями образуют волновой пакет, который ведет себя как классическая частица с массой m эфф:
Раз волны амплитуды вероятности в кристалле ведут себя как частицы, то естественно ожидать, что общее квантовомеханическое описание частицы выявит такое же волновое поведение, какое мы наблюдали в решетке. Предположим, мы взяли одномерную решетку и вообразили, что постоянная решетки b становится все меньше и меньше. В пределе получилось бы, что электрон может оказаться в любой точке линии. Нам пришлось бы перейти к непрерывному распределению амплитуд вероятности. У электрона появилась бы амплитуда оказаться в любом месте линии. Таков был бы один из путей описания движения электронов в вакууме. Иными словами, если мы вообразим, что все пространство можно пронумеровать бесконечным числом очень тесно расположенных точек, и сможем вывести уравнения, связывающие между собой амплитуды в одной точке с амплитудами в соседних, то получим квантовомеханические законы движения электрона в пространстве.
Начнем с того, что напомним некоторые общие принципы квантовой механики. Пусть имеется частица, которая может в квантовомеханической системе существовать в разных условиях. Любые заданные условия, в которых может быть обнаружен электрон, мы называем «состоянием» и отмечаем их при помощи вектора состояния, скажем |j>. В каких-то других условиях и метка будет другая, скажем вектор состояния |y>. Затем мы вводим идею о базисных состояниях. Мы говорим, что имеется совокупность состояний | 1 >, | 2>, | 3>, | 4> и т. д., обладающая следующими свойствами. Во-первых, все эти состояния совершенно различны — мы говорим, что они ортогональны. Под этим мы понимаем, что для любой пары базисных состояний | i > и | j > равна нулю амплитуда < i | j > того, что электрон, будучи в состоянии | j >, окажется также и в состоянии < i | , если только, конечно, | i > и | j > не обозначают одного и того же состояния. Все это символически представляется
так:
< i | j >=d ij (14.3)
Вспомните, что d ij=0, если i и j различны, и d ij =1, если i и j одинаковые числа.
Далее, базисные состояния | i >обязаны быть полной совокупностью, так чтобы любое состояние могло быть выражено на их языке. Иначе говоря, любое состояние |j> может быть полностью описано заданием всех амплитуд < i |j> того, что частица в состоянии |j> обнаружится также в состоянии | i > . Вектор состояния |j> представляется суммой базисных состояний, умноженных каждое на коэффициент, являющийся амплитудой того, что состояние |j> находится также в состоянии | i >:
Наконец, если рассмотреть любые два состояния |j> и |y>, то амплитуду того, что состояние |y>окажется также в состоянии |j>, можно найти, проецируя сперва состояние |y> на базисные состояния, а затем каждое из базисных состояний — на состояние |j>. Это записывается так:
Суммирование, конечно, проводится по всей совокупности базисных состояний | i > .
В гл. 11, когда мы рассчитывали, что бывает с электроном, помещенным в линейную цепочку атомов, вы выбрали совокупность базисных состояний, в которых электрон был расположен близ того или иного из атомов цепочки. Базисное состояние | n > представляло электрон, локализованный (расположенный) возле атома номер п. (Конечно, неважно, обозначать ли наши базисные состояния | n > или | i >.) Чуть позже мы нашли, что базисные состояния удобнее метить координатой атома, а не номером атома в цепочке. Состояние | х n > — это просто другой способ записи состояния | n >. Тогда, следуя общему правилу, любое состояние |y> можно описать заданием того, что электрон в состоянии |y> находится также в одном из состояний | х n > . Для удобства мы решили обозначать эти амплитуды символом
C n = < x n |y>. (14.6)
Поскольку базисные состояния связаны с местоположением электрона на линии, то амплитуду С n можно рассматривать как функцию координаты х и писать ее в виде С ( х n ) . Амплитуды С ( х n )будут в общем случае меняться во времени и поэтому суть также функции от t, но мы не будем отмечать эту зависимость явно.
Читать дальшеИнтервал:
Закладка: