Ричард Фейнман - 9. Квантовая механика II

Тут можно читать онлайн Ричард Фейнман - 9. Квантовая механика II - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    9. Квантовая механика II
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 9. Квантовая механика II краткое содержание

9. Квантовая механика II - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)

9. Квантовая механика II - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Опять-таки некоторый ключ к происхождению этого уравнения вы получите, если вернетесь к движению электрона в кристалле и посмотрите, как надо изменить уравнения, если энергия электрона медленно меняется от атома к атому, как если бы к кристаллу было приложено электрическое поле. Тогда член Е 0в (14.7) будет медленно меняться в зависимости от места и будет соответствовать новому слагаемому, появившемуся в (14.52). [Вас может удивить, отчего мы сразу перешли от (14.51) к (14.52), а не дали правильного выражения для амплитуды Н(х, х')=<���х | Н^|х' > . Да потому, что Н (х , х') можно написать только с помощью необычных алгебраических функций, а инте­грал в правой части (14.51) выражается через привычные вещи. Если вам это в самом деле интересно, то вот смотрите: Н (х, х') можно записать так:

где d означает вторую производную 6функции Эту довольно странную функцию - фото 199

где d'' означает вторую производную 6-функции. Эту довольно странную функцию можно заменить чуть более удобным и пол­ностью ей равнозначным алгебраическим выражением

Мы не будем пользоваться этими формулами а прямо будем работать с 1452 - фото 200

Мы не будем пользоваться этими формулами, а прямо будем рабо­тать с (14.52).]

Если теперь взять выражение (14.52) и подставить в (14.50) вместо интеграла, то для y( х ) =<���х |y> получится дифферен­циальное уравнение

Совершенно очевидно что надлежит поставить вместо 1453 если нас - фото 201

Совершенно очевидно, что надлежит поставить вместо (14.53),

если нас интересует трехмерное движение. Надо только d 2 /dx 2

заменить на

а V х заменить на V x у z Для электрона движущегося в поле с - фото 202

а V ( х )заменить на V ( x, у, z ) . Для электрона, движущегося в поле с потенциалом V (х, у, z), амплитуда y (х, у, z) удовлетво­ряет дифференциальному уравнению

Называется оно уравнением Шредингера и было первым известным - фото 203

Называется оно уравнением Шредингера и было первым извест­ным квантовомеханическим уравнением. Его написал Шредин­гер, прежде чем было открыто любое другое описанное в этом томе уравнение.

Хотя мы здесь пришли к нему совсем иным путем, но появле­ние этого уравнения в 1926 г., когда Шредингер впервые его написал, явилось великим историческим моментом, отметившим рождение квантовомеханического описания материи. Многие годы внутренняя атомная структура вещества была великой тайной. Никто не был в состоянии понять, что скрепляет вещест­во, отчего существует химическая связь, и, особенно, как атомам удается быть устойчивыми. Хотя Бор и смог дать описание внут­реннего движения электрона в атоме водорода, которое, каза­лось бы, объясняло наблюдаемый спектр лучей, испускаемых этим атомом, но причина, отчего электроны движутся именно так, оставалась тайной. Шредингер, открыв истинные уравне­ния движения электронов в масштабах атома, снабдил нас тео­рией, которая позволила рассчитать атомные явления количест­венно, точно и подробно. В принципе его уравнение способно объяснить все атомные явления, кроме тех, которые связаны с магнетизмом и теорией относительности. Оно объясняет уровни энергии атома и все, что касается химической связи. Но, ко­нечно, это объяснение только в принципе. Математика вскоре становится столь сложной, что точно решить удается только простейшие задачи. Одни лишь атомы водорода и гелия были рассчитаны с высокой точностью. Однако путем различных при­ближений, порой весьма сомнительных, можно многое понять и в более сложных атомах и в химической связи молекул. Некоторые из этих приближений были показаны в предыдущих главах.

Уравнение Шредингера в том виде, в каком мы его записали, не учитывает каких-либо магнитных эффектов. Их, правда, можно приближенно принять во внимание, добавив в уравнение еще другие члены. Но, как мы убедились раньше, магнетизм — это эффект существенно релятивистский, так что правильное опи­сание движения электрона в произвольном электромагнитном поле можно обсуждать только в рамках надлежащего релятиви­стского уравнения. Правильное релятивистское уравнение для движения электрона было открыто Дираком через год после того, как Шредингер придумал свое уравнение; оно имеет со­вершенно другой вид. Мы его не успеем здесь изучить.

Прежде чем перейти к рассмотрению некоторых следствий из уравнения Шредингера, хотелось бы продемонстрировать, как оно выглядит для системы многих частиц. Мы не будем им пользоваться, а просто хотим показать вам его, чтобы подчерк­нуть, что волновая функция y не просто обычная волна в про­странстве, а функция многих переменных. Если частиц много, уравнение превращается в

Потенциальная функция V это то что классически соответствует полной - фото 204

Потенциальная функция V — это то, что классически соответст­вует полной потенциальной энергии всех частиц. Если на ча­стицы не действуют внешние силы, то функция V есть попросту электростатическая энергия взаимодействия всех частиц. Иначе говоря, если заряд i -й частицы равен Z i q e , то функция V просто равна

6 Квантованные уровни энергии В одной из последующих глав мы на - фото 205

§ 6. Квантованные уровни энергии

В одной из последующих глав мы на каком-нибудь примере более подробно разберем решение уравнения Шредингера. А сейчас мы хотим показать вам, как получается одно из самых замечательных следствий из уравнения Шредингера — тот поразительный факт, что из дифференциального уравнения, в которое входят только непрерывные функции непрерывных пространственных переменных, могут возникнуть квантовые эффекты, как, например, дискретные уровни энергии в атоме. Нам надо понять следующий существенный факт: как это может быть, что энергия электрона, попавшего в потенциальный «колодец» и вынужденного оставаться в определенной области пространства, с необходимостью принимает значения только из точно определенной дискретной их совокупности.

Пусть речь идет об одномерном случае движения электрона, когда потенциальная энергия меняется по х так, как показано па фиг. 14.3.

Фиг 143 Потенциальная яма для частицы движущейся вдоль оси х - фото 206

Фиг. 14.3. Потенциальная яма для частицы, движущейся вдоль оси х.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




9. Квантовая механика II отзывы


Отзывы читателей о книге 9. Квантовая механика II, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x