Ричард Фейнман - 9. Квантовая механика II

Тут можно читать онлайн Ричард Фейнман - 9. Квантовая механика II - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    9. Квантовая механика II
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 9. Квантовая механика II краткое содержание

9. Квантовая механика II - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)

9. Квантовая механика II - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предположим, что потенциал является статиче­ским: со временем он не меняется. Как уже мы делали много раз, поищем решения, отвечающие состояниям определенной энергии, т. е. определенной частоты. Испытаем такую форму

решения:

Если мы эту функцию подставим в уравнение Шредингера то увидим что функция - фото 207

Если мы эту функцию подставим в уравнение Шредингера, то увидим, что функция а(х) обязана подчиняться следующему дифференциальному уравнению:

Это уравнение говорит что каково бы ни было х вторая производная ах по х - фото 208

Это уравнение говорит, что, каково бы ни было х, вторая про­изводная а(х) по х пропорциональна а (х) с коэффициентом пропорциональности V-Е. Вторая производная от а (х) это скорость изменения наклона а (х). Если потенциал V больше энергии Е частицы, то скорость изменения наклона а (х) будет иметь тот же знак, что и а (х). Это значит, что кривая а(х) по­вернута выпуклостью к оси х, т. е. более или менее следует ходу положительной или отрицательной экспоненты е ± x. Это озна­чает, что на участке слева от х 1(см. фиг. 14.3), где V больше предполагаемой энергии Е, функция а (х) будет напоминать одну из кривых на фиг. 14.4, а.

Фиг 144 Возможные формы волновой функции ах при VE и при V Если же - фото 209

Фиг. 14.4. Возможные формы волновой функции а(х) при V>E и при V

Если же потенциальная функция V меньше энергии Е, то знак второй производной а (х) по х противоположен знаку самой а ( х )и кривая a ( х )будет всегда вогнута к оси х, подобно одной из линий на фиг. 14.4, б. Решение на этом участке при­обретет форму кусочков синусоид.

Теперь поглядим, можем ли мы графически построить реше­ние для функции а ( х ) , отвечающей частице с энергией Е а при потенциале V, показанном на фиг. 14.5. Раз нас интересует такое положение, когда частица заключена внутри потенциальной ямы, то мы будем искать решения, при которых амплитуда волны принимает после удаления х за пределы потенциальной ямы очень малые значения. Мы очень легко можем представить себе кривую наподобие изображенной на фиг. 14.5, стремящуюся к нулю при больших отрицательных х и плавно поднимающуюся при приближении к х 1 . Поскольку V в точке х 1равно Е а , то кривизна функции в этой точке равна нулю. Между хх 2величина V-Е а всегда отрицательна, так что функция а ( х ) все время вогнута к оси, а кривизна тем больше, чем больше разность между Е а и V. Если продолжить кривую в область между xx 2, ей придется идти примерно так, как на фиг. 14.5.

Фиг 145 Волновая функция для энергии Е а стремящаяся к нулю при удалении х - фото 210

Фиг. 14.5. Волновая функция для энергии Е а , стремящаяся к нулю при удалении х в отрицательную сторону.

Теперь протянем эту кривую правее х 2 . Там она искрив­ляется прочь от оси и движется к большим положительным зна­чениям (фиг. 14.6).

Фиг 146 Волновая функция ах см фиг 145 продолженная за x 2 Для - фото 211

Фиг. 14.6. Волновая функция а(х) (см. фиг. 14.5), продолженная за x 2 .

Для выбранной нами энергии Е а решение a ( х )с ростом х растет все сильнее и сильнее. Действительно, ведь и кривизна решения а ( х )тоже возрастает (если потенциал остается почти постоянным). Амплитуда круто вырастает до гигантских масштабов. Что это означает? Просто что частица не «связана» потенциальной ямой. Обнаружить ее вне ямы беско­нечно более вероятно, чем внутри. Для изготовленного нами решения гораздо более вероятно встретить электрон в x =+Ґ, чем где-либо еще. Найти решение для связанной частицы нам не удалось.

Что ж, попробуем взять другую энергию, скажем, чуточку повыше чем Е а , например Е b (фиг. 14.7).

фиг 147 Волновая функция ах для энергии e b большей чем Е а Если - фото 212

фиг. 14.7. Волновая функция а(х) для энер­гии e b , большей чем Е а .

Если слева условия останутся теми же, то мы придем к решению, показанному на нижней части фиг. 14.7. На первых порах оно выглядит получ­ше, нов конце концов оказывается таким же плохим, как и решение для Е а , только теперь при возрастании x ве­личина а(х) стано­вится все более и бо­лее отрицательной.

Может быть, в этом разгадка! Раз небольшое изменение энергии от Е а к Е b приводит к тому, что кривая перебрасывается с одной стороны оси на другую, то, может быть, существует энергия, лежащая между Е а и Е b , при которой кривая для боль­ших х будет стремиться к нулю. Так оно и есть, и мы на фиг. 14.8 изобразили, как может выглядеть решение.

Фиг 148 Волновая функция для анергии Е c между Е а и Е b Вам нужно - фото 213

Фиг. 14.8. Волновая функция для анергии Е c между Е а и Е b .

Вам нужно понимать, что решение, показанное на рисунке, это весьма частное решение. Если бы мы даже чуть-чуть подняли или снизили энергию, то функция перешла бы в другие кривые, похожие на одну из штриховых кривых фиг. 14.8, и опять для связанной частицы не получилось бы надлежа­щих условий. Мы пришли к выводу, что если частица должна находиться в потен­циальной яме, то это мо­жет с ней случиться толь­ко при вполне определен­ной энергии.

Значит ли это, что у частицы, находящейся в связанном состоянии в по­тенциальной яме, может быть только одна энергия? Отнюдь. Могут быть и другие, но не слишком близко к Е с . Обратите внимание, что волновая функция на фиг. 14.8 четы­ре раза пересекает ось на участке х 1 х 2 . Если бы мы выбрали энергию значи­тельно ниже Е с , то могло бы получиться решение, которое бы пересекло ось только трижды, только дважды, только единожды или ни разу. Возможные

решения намечены на фиг. 14.9.

Фиг 149 Функция ах для пяти связанных состояний с наинизшими энергиями - фото 214

Фиг. 14.9. Функция а(х) для пяти связанных состояний с наинизшими энергиями.

(Могут быть и решения, отве­чающие более высоким энергиям.) Вывод состоит в том, что если частица загнана в потенциальную яму, то ее энергия прини­мает только определенные специальные значения, образующие дискретный энергетический спектр. Вы понимаете теперь, как способно дифференциальное уравнение описать этот основной факт квантовой физики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




9. Квантовая механика II отзывы


Отзывы читателей о книге 9. Квантовая механика II, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x