Ричард Фейнман - 9. Квантовая механика II
- Название:9. Квантовая механика II
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 9. Квантовая механика II краткое содержание
9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Подстановка n =2 дает следующий более высокий уровень. В волновую функцию этого состояния входят два слагаемых. Она равна
Волновая функция для следующего уровня равна
Эти три волновые функции начерчены на фиг. 17.2.
Фиг. 17.2. Волновые функции трех первых состояний атома водорода с l =0. Масштабы выбраны так, чтобы полные вероятности совпадали.
Общая тенденция уже видна. Все волновые функции при больших r, поколебавшись несколько раз, приближаются к нулю. И действительно, число «изгибов» у y n как раз равно n, или, если угодно, число пересечений оси абсцисс — число нулей — равно n- 1.
§ 3. Состояния с угловой зависимостью
Мы нашли, что в состояниях, описываемых волновой функцией y n ( r ) , амплитуда вероятности обнаружить электрон сферически симметрична; она зависит только от r — расстояния до протона. Момент количества движения таких состояний равен нулю. Теперь займемся состояниями, у которых какой-то момент количества движения имеется.
Можно было бы, конечно, просто исследовать чисто математическую задачу отыскания функций от r, q и j, удовлетворяющих дифференциальному уравнению (17.7), добавив только физическое условие, что единственно приемлемые для нас функции — это такие, которые при больших r стремятся к нулю. Так почти всегда и поступают. Но мы попробуем несколько сократить наш путь и воспользоваться тем, что мы уже знаем, именно тем, что нам известно, как амплитуды зависят от пространственных углов.
Атом водорода в том или ином состоянии — это частица с определенным «спином» j — квантовым числом полного момента количества движения. Часть этого спина возникает от собственного спина электрона, другая — от движения электрона. Поскольку каждая из этих частей действует (в очень хорошем приближении) независимо, то мы по-прежнему будем игнорировать спиновую часть и учтем только «орбитальный» момент. Впрочем, это орбитальное движение в точности подобно спину. Скажем, если орбитальное квантовое число есть l, то z -компонента момента количества движения может быть l , l- 1, l -2, . . ., - l . (Мы, как обычно, измеряем все в единицах h .) Кроме того, по-прежнему годятся все наши матрицы поворота и прочие известные свойства. (Начиная с этого места, мы действительно начнем пренебрегать спином электрона; говоря о «моменте количества движения», мы будем иметь в виду только орбитальную его часть.)
Поскольку поле с потенциалом V, в котором движется электрон, зависит только от r, а не от q и не от j, то гамильтониан симметричен относительно поворотов. Отсюда следует, что и момент количества движения и все его проекции сохраняются. Это не есть особое свойство кулонова потенциала e 2 /r; оно справедливо при движении в любом «центральном поле» — поле, зависящем только от r .
Представим себе некоторое возможное состояние электрона; внутренняя угловая структура этого состояния будет определяться квантовым числом l. В зависимости от «ориентации» полного момента количества движения относительно оси z его проекция т на ось z может равняться одному из 2 l +1 чисел между + l и - l. Пусть, например, m =1. С какой амплитудой электрон окажется на оси z на расстоянии r от начала? С нулевой. Электрон на оси z не может иметь какого-либо орбитального момента относительно этой оси. Но пусть тогда m =0. Вот это другое дело; теперь уже может появиться не равная нулю амплитуда того, что электрон окажется на оси z на таком-то расстоянии от протона. Обозначим эту амплитуду F l ( r ). Это — амплитуда того, что электрон будет обнаружен на расстоянии r по оси z, когда атом находится в состоянии | l, 0>, т. е. в состоянии с орбитальным моментом l и его z -компонентой m=0. А если нам известно F l ( r ), то известно все. Теперь уже в любом состоянии | l, m >мы можем узнать амплитуду y lm ( r ) того, что электрон обнаружится в произвольном месте атома. Как мы это узнаем? А вот следите. Пусть у нас есть атом в состоянии | l, m > . Какова амплитуда того, что электрон обнаружится под углом q, j и на расстоянии r от начала? Проведите новую ось z, скажем z', под этим углом (фиг. 17.3) и задайте вопрос: какова амплитуда того, что электрон окажется на новой оси z на расстоянии r ?
Фиг. 17.3. Точка (х, у, z) лежит на оси z' системы координат х' , у', z'.
Мы знаем, что он не сможет оказаться на оси z', если только m — его z'-компонента момента количества движения — не равна нулю. Когда же m' =0, то амплитуда того, что электрон обнаружится на оси z', есть F l ( r ). Значит, результат получится перемножением двух амплитуд. Первая это амплитуда того, что атом, находящийся в состоянии | l, т > относительно оси z, окажется в состоянии | l, m'= 0> относительно оси z' . Умножьте эту амплитуду на F l (r) и вы получите амплитуду y l , m( r) того, что электрон обнаружится в точке ( r , q, j) относительно первоначальной системы осей.
Давайте все это распишем. Матрицы преобразования для поворотов мы уже вычислили. Чтобы перейти от системы х, у, z к системе х', у', z' (см. фиг. 17.3), можно сперва сделать поворот вокруг оси z на угол j, а потом сделать поворот вокруг новой оси у (оси у') на угол q. Совместный поворот выразится произведением
R у (q) R z (j).
Амплитуда того, что после поворота обнаружится состояние | l , m' =0>, есть
В итоге получаем
Орбитальное движение может обладать только целыми значениями l. (Если электрон может быть обнаружен в любом месте, где r№ 0 , то имеется некоторая амплитуда того, что в этом направлении будет m =0. А состояния с m =0бывают только при целых спинах.) Матрицы поворота для l =1 приведены в табл.15.2 (стр. 129). Для больших l вы можете воспользоваться общими формулами, выведенными в гл. 16. Матрицы R z (j) и R y (q) написаны по отдельности, но как их комбинировать, вы знаете. В общем случае вы начнете с состояния | l , m > и подействуете на него оператором R z (j), получив новое состояние R z (j)| l, т >(которое просто равно e im j | l, m > ) . Затем вы подействуете на это состояние оператором R y (q) и получите состояние R y (q) R z (j) | l , m >. Умножение на < l , 0| даст вам матричный элемент (17.31).
Читать дальшеИнтервал:
Закладка: