Ричард Фейнман - 9. Квантовая механика II

Тут можно читать онлайн Ричард Фейнман - 9. Квантовая механика II - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    9. Квантовая механика II
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 9. Квантовая механика II краткое содержание

9. Квантовая механика II - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)

9. Квантовая механика II - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но так как самая внешняя оболочка марганца, железа, ко­бальта и никеля имеет одну и ту же конфигурацию, то все они обладают близкими химическими свойствами. (Этот эффект еще сильнее выражен у редкоземельных элементов. У них внешняя оболочка одинакова, а заполняется постепенно внутренняя ячейка, что меньше сказывается на их химических свойствах.) То же и в меди. В ней тоже построение З d -оболочки завер­шается грабежом: из 4 s -оболочки уводится один электрон. Энергия комбинации 10, 1, однако, настолько близка у меди к энергии комбинации 9, 2, что равновесие может сместиться уже оттого, что поблизости стоит другой атом. По этой причине два последних электрона меди примерно равноценны, и валент­ность меди равна то 1, то 2. (Временами она проявляет себя так, как если бы ее электроны были в комбинации 9, 2.) Похо­жие вещи случаются и в других местах таблицы; они-то и от­ветственны за то, что другие металлы, такие, как железо, со­единяются химически то с той, то с другой валентностью. Нако­нец, у цинка обе оболочки 3d и 4s заполняются раз и навсегда.

От Ga до Kr

От галлия до криптона последовательность опять продол­жается нормально, заполняя 4 p -оболочку. Внешние оболочки, энергии и химические свойства повторяют картину изменений на участке от бора до неона и от алюминия до аргона.

Криптон, как и аргон или неон, известен как «благородный» газ. Все эти три «благородных» газа химически «инертны». Это означает только то, что после того, как они заполнили обо­лочки со сравнительно низкими энергиями, редки будут случаи, когда им станет энергетически выгодно соединиться в простые сочетания с другими элементами. Но для «благородства» недо­статочно просто обладать заполненной оболочкой. У бериллия, например, или у магния заполнены s-оболочки, но энергия этих оболочек чересчур высока, чтобы можно было говорить об устойчивости. Точно так же можно было бы ожидать появления другого «благородного» элемента где-то возле никеля, если бы энергия у 3 d -оболочки была бы чуть пониже (или у 4 s -оболочки повыше). С другой стороны, криптон не вполне инертен; он об­разует с хлором слабо связанное соединение.

Поскольку в рассмотренной нами части таблицы уже про­явились все основные черты периодической системы, мы обры­ваем наше изложение на элементе № 36 (их остается еще штук 70, а то и больше!).

Мы хотим отметить еще один момент: мы в состоянии понять в какой-то степени не только валентности, но можем кое-что сказать и о направлениях химических связей. Возьмем такой атом, как кислород. В нем четыре 2 р -электрона. Первые три попадают в состояния « x », « у » и « z », а четвертый вынужден заполнить одно из них, оставив два других — скажем, « x » и « у » — вакантными. Посмотрите теперь, что происходит в Н 2O. Каждый из двух водородов желает разделить свой электрон с кислородом, помогая кислороду заполнить оболочку. Эти элек­троны будут стремиться попасть на вакансии в состояниях « x » и « y ». Поэтому два водорода в молекуле воды обязаны располо­житься под прямым углом друг к другу, если смотреть из центра атома кислорода. На самом деле угол равен 105°. Можно даже понять, почему угол больше 90°. Обобществив свои электроны с кислородом, водороды остаются в конце концов с избытком положительного заряда. Электрическое отталкивание «растя­гивает» волновые функции и разводит угол до 105°. Так же об­стоит дело и у H 2S. Но атом серы крупнее, атомы водорода ока­зываются дальше друг от друга, и угол расходится только до 93°. А селен еще крупнее, поэтому в H 2Se угол уже совсем бли­зок к 90°.

Аналогичные рассуждения позволяют разобраться в гео­метрии аммиака H 3N. В азоте есть место еще для трех 2 р -электронов, по одному на каждое состояние типа « x », «у» и « z ». Три водорода будут вынуждены подсоединиться под прямыми углами друг к другу. Углы снова окажутся чуть больше 90°, опять-таки из-за электрического отталкивания, но по крайней мере теперь ясно, отчего молекула H 3N не плоская. Углы в фосфине Н 3Р уже ближе к 90°, а в H 3As еще ближе. Мы не зря предположили, что NH 3не плоский, когда говорили о нем как о системе с двумя состояниями. Именно из-за этой объемности аммиака и возможен аммиачный мазер. Вы видите, что сама форма молекулы аммиака тоже следует из квантовой механики. Уравнение Шредингера явилось одним из величайших триумфов физики. Снабдив нас ключом к механизму, лежащему в основе строения атома, оно объяснило атомные спектры и всю химию, благодаря чему стала понятна физическая природа материи.

* В действительности мнение об инертности благородных газов ока­залось, как и многое другое, сильным преувеличением. Криптон, напри­мер, весьма охотно соединяется с фтором, образуя кристаллы KrF 6 . Сейчас химия инертных газов превращается в большую и увлекательную науку.— Прим. ред.

* Это нетрудно вывести из (16.35). Но можно это сделать, исходя из основных принципов; надо только воспользоваться идеями, изложенными в гл. 16, § 4. Состояние |l, l> может быть составлено из 2l частиц со спином 1 / 2 , у которых спин направлен вверх; а в состоянии |l, 0> l спинов было бы направлено вверх, а l — вниз. При повороте амплитуда того, что спин останется тем же, равна cosq/2, а амплитуда того, что он перевернется, равна sin q/2. А нас интересует амплитуда того, что l спинов не перевер­нутся, а другие l перевернутся. Такая амплитуда равна (cosq/2sinq/2) l , а это то же самое, что sin l q.

* Поскольку это и другие особые наименования являются частью общепринятого словаря атомной физики, вам попросту придется выучить их. Мы вам поможем их запомнить, поместив в этой главе небольшой «словарик» подобных терминов.

* Как обычно, 9 Квантовая механика II - изображение 446

Глава 18

ОПЕРАТОРЫ

§ 1. Операции и операторы

§ 2. Средние энергии

§ 3. Средняя энергия атома

§ 4. Оператор места

§ 5. Оператор импульса

§ 6. Момент коли­чества движения

§ 7. Изменение средних со временем

§ 1. Операции и операторы

Для того чтобы управиться со всем, что мы до сих пор делали в квантовой механике, достаточно было бы обычной алгебры, но мы все же время от времени демонстрировали особые способы записи квантовомеханических величин и уравнений. Мы хотели бы рассказать теперь немного больше о некоторых интересных и по­лезных способах описания квантовомеханических величин.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




9. Квантовая механика II отзывы


Отзывы читателей о книге 9. Квантовая механика II, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x