Ричард Фейнман - 8. Квантовая механика I

Тут можно читать онлайн Ричард Фейнман - 8. Квантовая механика I - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    8. Квантовая механика I
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 8. Квантовая механика I краткое содержание

8. Квантовая механика I - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

8. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)

8. Квантовая механика I - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако из 427 нам известно что так что должно быть 431 Этих - фото 217

Однако из (4.27) нам известно, что

так что должно быть 431 Этих четырех уравнений вполне хватает чтобы - фото 218

так что должно быть

431 Этих четырех уравнений вполне хватает чтобы определить все наши - фото 219(4.31)

Этих четырех уравнений вполне хватает, чтобы определить все наши неизвестные а, b, с и d. Сделать это нетрудно. По­смотрите на второе и четвертое уравнения. Вы видите, что a 2= d 2, откуда либо a=d, либо a=-d. Но последнее отпадает, потому что тогда не выполнялось бы первое уравнение. Зна­чит, d=a. А тогда сразу же выходит b=1/2a и с=-1/2а. Те­перь все выражено через а. Подставляя, скажем, во второе

уравнение значения b и с, получаем

а 2-1/4a 2= 0. или а 4= 1/ 4.

Из четырех решений этого уравнения только два приводят к детерминанту стандартной формы. Мы можем принять а=1/Ц2;

тогда

Иными словами для двух приборов S и T при условии что Т повернут относительно - фото 220

Иными словами, для двух приборов S и T при условии, что Т повернут относительно S на 90° вокруг оси у, преобра­зование имеет вид

Эти уравнения можно конечно разрешить относительно С и С это даст нам - фото 221

Эти уравнения можно, конечно, разрешить относительно С + и С - ; это даст нам преобразование при повороте вокруг оси у на -90°. Переставив еще и штрихи, мы напишем

5 Повороты вокруг оси х Вы пожалуй подумаете Это становится смешным - фото 222

§ 5. Повороты вокруг оси х

Вы, пожалуй, подумаете: «Это становится смешным. Чему же нас теперь будут учить— поворотам на 47° вокруг оси у, потом на 33° вокруг x? Долго ли это будет продолжаться?» Нет, оказы­вается, я почти все рассказал. Зная только два преобразова­ния — на 90° вокруг оси у и на произвольный угол вокруг оси z (как вы помните, именно с этого мы начали),— мы уже способны производить любые повороты.

Для иллюстрации предположим, что нас интересует пово­рот на угол а вокруг оси х. Мы знаем, как быть с поворотом на угол а вокруг оси z, но нам нужен поворот вокруг оси х. Как его определить? Сперва повернем ось z вниз до оси х, а это есть поворот на +90° вокруг оси у (фиг. 4.8).

Фиг 48 Поворот на угол a вокруг оси х равнозначен повороту на 90 вокруг - фото 223

Фиг. 4.8. Поворот на угол a вокруг оси х равнозначен повороту на +90° вокруг оси у (а), за которым следует поворот ни а вокруг оси z' (б), вслед за которым про­исходит поворот на -90° вокруг оси. у" (в).

Затем во­круг оси z' повернемся на угол a. А потом повернемся на -90° вокpуг оси у".

Итог этих трех поворотов тот же самый, что при повороте вокруг оси х на угол a . Таково свойство пространства. (Все эти сочетания поворотов их результат очень трудно себе представить. Не правда ли, странно, что, живя в трех измерениях, мы все же с трудом воспринимаем, что произойдет, если сперва повернуться так, а потом еще как-нибудь. Вероятно, если бы мы были птицами или рыбами и если а мы на собственном опыте знали, что бывает, когда все время крутишь разные сальто в пространстве, нам было бы легче воспринимать подобные вещи.) Во всяком случае, давайте выведем преобразование для поворота на угол а вокруг оси х, пользуясь тем, что нам уже известно. При первом повороте на +90 ° вокруг оси у амплитуды следуют закону (4.32). Если повернутые оси обозначить х' , y' и z', то последующий поворот на угол а вокруг оси z переводит нас в систему отсчета х". у", z", для которой

Последний поворот на 90 вокруг оси у переводит нас в систему х у z - фото 224

Последний поворот на -90° вокруг оси у" переводит нас в систему х'", у'", z'"; из(4.33) следует

Сочетая эти два последних преобразования получаем Подставляя сюда - фото 225

Сочетая эти два последних преобразования, получаем

Подставляя сюда вместо С и С 432 придем к полному преобразованию - фото 226

Подставляя сюда вместо С' + и С' -(4.32), придем к полному преобразованию

А если вспомнить что то эти формулы можно записать проще Это и - фото 227

А если вспомнить, что

то эти формулы можно записать проще Это и есть наше искомое - фото 228

то эти формулы можно записать проще:

Это и есть наше искомое преобразование для поворота вокруг оси х на любой угол - фото 229

Это и есть наше искомое преобразование для поворота вокруг оси х на любой угол a. Оно лишь чуть посложнее остальных,

§ 6. Произвольные повороты

Теперь уже понятно, как быть с произвольным поворотом. Во-первых, заметьте, что любая относительная ориентация двух систем координат может быть описана тремя углами (фиг. 4.9).

Фиг 49 Ориентацию любой системы координат х у г по отношению к другой - фото 230

Фиг. 4.9. Ориентацию лю­бой системы координат х' , у', г' по отношению к другой системе х, у, z можно опре­делить с помощью углов Эйлера a , b, g .

Если есть система осей х', у', z', ориентированных относительно х, у, z как угодно, то соотношение между ними можно описать тремя углами Эйлера a, b и g, определяющими три последовательных поворота, которые переводят систему х, у, z в систему х', у', z' . Отправляясь от x, у, z, мы повора­чиваем нашу систему на угол bets вокруг оси z, перенося ось х на линию х'. Затем мы проводим поворот на угол а вокруг этой временной оси х 1 , чтобы довести ось z до z'. Наконец, по­ворот вокруг новой оси z (т. е. вокруг z' ) на угол g переведет ось хх', а ось у в у'. Мы знаем преобразования для каж­дого из трех поворотов — они даются формулами (4.19) и (4.34). Комбинируя их в нужном порядке, получаем

Итак начав просто с некоторых предположений о свойствах пространства мы - фото 231

Итак, начав просто с некоторых предположений о свойст­вах пространства, мы вывели преобразование амплитуды при любом повороте. Это означает, что если нам известны ампли­туды того, что любое состояние частицы со спином 1/ 2перейдет в один из двух пучков прибора Штерна — Герлаха S с осями х, у, z, то мы можем подсчитать, какая часть перейдет в каж­дый пучок в приборе Т с осями х', у' и z'. Иначе говоря, если имеется состояние y частицы со спином 1/ 2, у которого ам­плитуды пребывания вверху и внизу по отношению к оси z системы координат х, у, z равны С +=<+|y> и С -=<-|y>, то тем самым мы знаем амплитуды С + и C -пребывания вверху и внизу по отношению к оси z' любой другой системы х', у", z' , Четверка коэффициентов в (4.35) — это члены «матрицы преобразования», с помощью которой можно проецировать амплитуды частицы со спином 1/ 2в другие системы ко­ординат.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




8. Квантовая механика I отзывы


Отзывы читателей о книге 8. Квантовая механика I, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x