Ричард Фейнман - 8. Квантовая механика I

Тут можно читать онлайн Ричард Фейнман - 8. Квантовая механика I - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    8. Квантовая механика I
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 8. Квантовая механика I краткое содержание

8. Квантовая механика I - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

8. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)

8. Квантовая механика I - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вот почему мы часто говорим, что атом на определенном энергетическом уровне находится в стационарном состоянии. Если вы что-то внутри него измеряете, вы обнаруживаете, что ничего (по вероятности) во времени не меняется. Чтобы вероят­ность менялась во времени, должна быть интерференция двух амплитуд при двух разных частотах, а это означало бы, что неизвестно, какова энергия. У предмета были бы одна ампли­туда пребывания в состоянии с одной энергией и другая ам­плитуда пребывания в состоянии с другой энергией. Так в квантовой механике описывается что-то, если поведение этого «чего-то» зависит от времени.

Если имеется случай, когда смешаны два различных со­стояния с разными энергиями, то амплитуды каждого из двух состояний меняются со временем согласно уравнению (5.2), скажем, как

И если имеется комбинация этих двух состояний то появится интерференция Но - фото 239

И если имеется комбинация этих двух состояний, то появится интерференция. Но заметьте, что добавление к обеим энергиям одной и той же константы ничего не меняет. Если кто-то другой пользовался другой шкалой энергий, на которой все энергии сдвинуты на константу (скажем, на А), то амплитуды оказаться в этих двух состояниях, с его точки зрения, были бы

Все его амплитуды оказались бы умноженными на один и тот же множитель ехр - фото 240

Все его амплитуды оказались бы умноженными на один и тот же множитель

ехр[- i(A/h)/t ] , и во все линейные комбинации, во все интерференции вошел бы тот же множитель. Вычисляя для определения вероятностей модули, он пришел бы к тем же ответам. Выбор начала отсчета на нашей шкале энергий ничего не меняет; энергию можно отсчитывать от любого нуля. В ре­лятивистских задачах приятнее измерять энергию так, чтобы в нее входила масса покоя, но для многих других нерелятивист­ских целей часто лучше вычесть из всех появляющихся энер­гий стандартную величину. Например, в случае атома обычно бывает удобно вычесть энергию М sс 2, где М s масса отдель­ных его частей, ядра и электронов, отличающаяся, конечно, от массы самого атома. В других задачах полезно бывает вы­честь из всех энергий число M g c 2 , где M g масса всего атома в основном состоянии; тогда остающаяся энергия есть просто энергия возбуждения атома. Значит, порой мы имеем право сдвигать, наш нуль энергии очень и очень сильно, и это все равно ничего не меняет (при условии, что все энергии в данном частном расчете сдвинуты на одно и то же число). На этом мы расстанемся с покоящимися частицами.

§ 2. Равномерное движение

Если мы предполагаем, что теория относительности верна, то частица, покоящаяся в одной инерциальной системе, в дру­гой инерциальной системе может оказаться в равномерном движении. В системе покоя частицы амплитуда вероятности для всех х, у и z одинакова, но зависит от t. Величина амплиту­ды для всех t одинакова, а фаза зависит от t. Мы можем по­лучить картину поведения амплитуды, если проведем линии равной фазы (скажем, нулевой) как функций х и t. Для части­цы в покое эти линии равной фазы параллельны оси х и рас­положены по оси t на равных расстояниях (показано пунктир­ными линиями на фиг. 5.1).

Фиг 51 Релятивистское преобразование амплитуды покоящейся частицы в - фото 241

Фиг. 5.1. Релятивистское преоб­разование амплитуды покоящейся. частицы в систему х—t.

В другой системе, х' , у', z' , t', движущейся относительно частицы, скажем, в направлении х, координаты х' и t' некото­рой частной точки пространства связаны с х и t преобразованием Лоренца. Это преобразование можно изобразить графи­чески, проведя оси х' и t', как показано на фиг. 5.1 [см. гл. 17 (вып. 2), фиг. 17.2]. Вы видите, что в системе х'-—t' точки рав­ной фазы вдоль оси t' расположены на других расстояниях, так что частота временных изменений уже другая. Кроме того, фаза меняется и по х'. т. е. амплитуда вероятности должна быть функцией х'.

При преобразовании Лоренца для скорости v направлен­ной, скажем, вдоль отрицательного направления х. время t связано со временем t' формулой

8 Квантовая механика I - изображение 242

и теперь наша амплитуда меняется так:

В штрихованной системе она меняется в пространстве и во времени Если амплитуду - фото 243

В штрихованной системе она меняется в пространстве и во времени. Если амплитуду записать в виде

то видно что Е р Е 0 Ц 1 v 2с 2 Это энергия вычисленная по - фото 244

то видно, что Е' р 0 /Ц( 1 -v 2/с 2). Это энергия, вычисленная по классическим правилам для частицы с энергией покоя Е 0 , движущейся со скоростью v; p'=E' p v/c 2 соответствующий импульс частицы.

Вы знаете, что х m =(t, х, y , z) и р m =(Е, р х , р y , р г ) — четырехвекторы, a p m x m = Et- р·х—скалярный инвариант. В системе покоя частицы p m x m просто равно Et; значит, при преобразовании в другую систему Et следует заменить на

8 Квантовая механика I - изображение 245

Итак, амплитуда вероятности для частицы, импульс которой есть р, будет пропорциональна

где Е р энергия частицы с импульсом р т е а Е 0 как и прежде - фото 246

где Е р энергия частицы с импульсом р, т. е.

а Е 0 как и прежде энергия покоя В нерелятивистских задачах можно писать - фото 247

а Е 0 , как и прежде, —энергия покоя. В нерелятивистских задачах можно писать

где W p избыток или нехватка энергии по сравнению с энергией покоя М sс - фото 248

где W p избыток (или нехватка) энергии по сравнению с энергией покоя М sс 2частей атома. В общем случае в W p должны были бы войти и кинетическая энергия атома, и его энергия связи или возбуждения, которые можно назвать «внутренней» энергией. Тогда мы бы писали

а амплитуды имели бы вид Мы собираемся все расчеты вести - фото 249

а амплитуды имели бы вид

Мы собираемся все расчеты вести нерелятивистски так что именно таким видом - фото 250

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




8. Квантовая механика I отзывы


Отзывы читателей о книге 8. Квантовая механика I, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x