Ричард Фейнман - 8. Квантовая механика I

Тут можно читать онлайн Ричард Фейнман - 8. Квантовая механика I - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    8. Квантовая механика I
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 8. Квантовая механика I краткое содержание

8. Квантовая механика I - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

8. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)

8. Квантовая механика I - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

e -( i / h ) Vt

сверх того, что было при V =0. Это ничем не отличается от сдвига нуля нашей энергетической шкалы. Получится одинаковый сдвиг всех фаз всех амплитуд, а это, как мы раньше убе­дились, не меняет никаких вероятностей. Все физические яв­ления остаются теми же. (Мы предположили, что речь идет о разных состояниях одного и того же заряженного объекта, так что q j у них у всех одинаково. Если бы объект мог менять свой заряд, переходя от одного состояния к другому, то мы пришли бы к совершенно другому результату, но сохранение заряда предохраняет нас от этого.)

До сих пор наше допущение согласовывалось с тем, чего сле­довало ожидать от простого изменения уровня отсчета энер­гии. Но если оно на самом деле справедливо, то обязано вы­полняться и для потенциальной энергии, которая не является просто постоянной. В общем случае V может меняться произ­вольным образом и во времени, и в пространстве, и оконча­тельный результат для амплитуды должен выражаться на языке дифференциальных уравнений. Но мы не хотим сразу приступать к общему случаю, а ограничимся некоторым пред­ставлением о том, что происходит. Так что пока мы рассмотрим только потенциал, который постоянен во времени и медленно меняется в пространстве. Тогда мы сможем сравнить между со­бой классические и квантовые представления.

Предположим, что мы размышляем о случае, изображенном на фиг. 5.3, где два ящика поддерживаются при постоянных потенциалах j 1и j 2, а в области между ними потенциал плавно меняется от j 1к j 2.

Фиг 53 Амплитуда для частицы переходящей от одного потенциала к другому - фото 265

Фиг. 5.3. Амплитуда для частицы, переходящей от одного потенциала к другому.

Вообразим, что у некоторой частицы есть амплитуда оказаться в одной из этих областей. Допустим так­же, что импульс достаточно велик, так что в любой малой об­ласти, в которой помещается много длин волн, потенциал почти постоянен. Тогда мы вправе считать, что в любой части прост­ранства амплитуда обязана выглядеть так, как (5.18), только V в каждой части пространства будет свое.

Рассмотрим частный случай, когда j 1=0, так что потен­циальная энергия в первом ящике равна нулю, во втором же пусть q j 2будет отрицательно, так что классически частица в нем будет обладать большей кинетической энергией. В клас­сическом смысле она во втором ящике будет двигаться быст­рее, у нее будет, стало быть, и больший импульс. Посмот­рим, как это может получиться из квантовой механики.

При наших предположениях амплитуда в первом ящике Должна была быть пропорциональна

а во втором Будем считать что внутренняя энергия не изменяется а - фото 266

а во втором

Будем считать что внутренняя энергия не изменяется а остается в обеих - фото 267

(Будем считать, что внутренняя энергия не изменяется, а остается в обеих областях одной и той же.) Вопрос заключается в следующем: как эти две амплитуды сопрягаются друг с другом в области между ящиками?

Мы будем считать, что все потенциалы во времени постоянны, так что в условиях ничего не меняется. Затем мы предположим, что изменения амплитуды (т. е. ее фазы) всюду обладают одной и той же частотой, потому что в «среде» между ящи­ками нет, так сказать, ничего, что бы зависело от времени. Если в пространстве ничего не меняется, то можно считать, что волна в одной области «генерирует» во всем пространстве вспомогательные волны, которые все колеблются с одинако­вой частотой и, подобно световым волнам, проходящим через покоящееся вещество, не меняют своей частоты. Если частоты в (5.21) и (5.22) одинаковы, то должно выполняться равенство

Здесь по обе стороны стоят просто классические полные энергии так что 523 - фото 268

Здесь по обе стороны стоят просто классические полные энер­гии, так что (5.23) есть утверждение о сохранении энергии. Иными словами, классическое утверждение о сохранении энер­гии вполне равноценно квантовомеханическому утверждению о том, что частоты у частицы всюду одинаковы, если условия во времени не меняются. Все это согласуется с представлением о том, что h w =E.

В том частном случае, когда V 1=0, a V 2отрицательно (5.23) означает, что p 2больше р 1,т. е. в области 2 волны короче. Поверхности равной фазы показаны на фиг. 5.3 пунктиром. Там еще вычерчен график вещественной части амплитуды, из которого тоже видно, как уменьшается длин волны при переходе от области 1 в область 2. Групповая скорость волн, равная р/М, тоже возрастает так, как и следовало ожидать из классического сохранения энергии, потому что оно просто совпадает с (5.23).

Существует интересный частный случай, когда V 2становится столь большим, что V 2- V 1уже превышает p 2 1 /2M. Тогда p 2 2 , даваемое формулой

становится отрицательным А это значит что р 2 мнимо число скажем ip - фото 269

становится отрицательным. А это значит, что р 2— мнимо число, скажем ip'. Классически мы бы сказали, что частица никогда не попадет в область 2, ей не хватит энергии, чтобы взобраться на потенциальный холм. Однако в квантовой ме­ханике амплитуда по-прежнему представляется уравнением (5.22); ее изменения в пространстве по-прежнему следуют закону

8 Квантовая механика I - изображение 270

Но раз p 2— мнимое число, то пространственная зависимость превращается в вещественную экспоненту. Если, скажем, частица сперва двигалась в направлении +х, то амплитуда начнет меняться, как

С ростом х она быстро падает Вообразим что обе области с разными - фото 271

С ростом х она быстро падает.

Вообразим, что обе области с разными потенциалами рас­положены очень тесно друг к другу, так что потенциальная анергия внезапно изменяется от VV 2(фиг. 5.4, а).

Фиг 54 Амплитуда для частицы приближающейся к сильно отталкивающему - фото 272

Фиг. 5.4. Амплитуда для частицы, приближающейся к сильно отталкивающему потенциалу.

Начер­тив график вещественной части амплитуды вероятности, Мы получим зависимость, показанную на фиг. 5.4, б. Волна в области 1 отвечает частице, пытающейся попасть в область 2, но там амплитуда быстро спадает. Имеется какой-то шанс, что ее заметят в области 2, где классически она ни за что бы Не оказалась, но амплитуда этого очень мала (кроме места близ самой границы). Положение вещей очень похоже на то, Что мы обнаружили для полного внутреннего отражения света. Обычно свет не выходит, но его можно все же заметить, если поставить что-нибудь на расстоянии в одну-две длины волны от поверхности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




8. Квантовая механика I отзывы


Отзывы читателей о книге 8. Квантовая механика I, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x