Ричард Фейнман - 7. Физика сплошных сред

Тут можно читать онлайн Ричард Фейнман - 7. Физика сплошных сред - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    7. Физика сплошных сред
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Первая константа обычно записывается как 2m при этом коэффициенту равен - фото 391

(Первая константа обычно записывается как 2m; при этом коэффициенту равен модулю сдвига, определенному нами в пре­дыдущей главе.) Постоянные (m, и l называются упругими по­стоянными Лямэ. Сравнивая уравнения (39.20) с уравнением (39.12), вы видите, что

Таким образом мы доказали что уравнение 3919 действительно правильное Вы - фото 392

Таким образом, мы доказали, что уравнение (39.19) действи­тельно правильное. Вы видите также, что упругие свойства изотропного материала, как уже говорилось в предыдущей главе, полностью задаются двумя постоянными.

Коэффициенты С могут быть выражены через любые две из упругих постоянных, которые использовались ранее, напри­мер через модуль Юнга Y и отношение Пуассона s. На вашу долю оставляю показать, что

3 Движения в упругом теле Мы подчеркивали что в упругом теле - фото 393

§ 3. Движения в упругом теле

Мы подчеркивали, что в упругом теле, находящемся в равно­весии, внутренние напряжения распределяются так, чтобы энергия была минимальной. Посмотрим теперь, что происходит, если внутренние силы не уравновешены. Возьмем маленький кусочек материала внутри некоторой поверхности А (фиг. 39.5).

Фиг 395 Маленький элемент объема V ограниченный поверхностью А Если - фото 394

Фиг. 39.5. Маленький элемент объема V , ограниченный поверхностью А,

Если этот кусочек находится в равновесии, то полная действую­щая на него сила F должна быть равна нулю. Можно считать, что эта сила состоит из двух частей, одна из которых обуслов­лена «внешними» силами, подобными гравитации, действующими на расстоянии на вещество нашего кусочка и приводящими к величине силы на единицу объема f внешн. Полная же внешняя сила F внешнравна интегралу от f внешнпо всему объему кусочка:

В равновесии эти силы балансируются полной силой F внутр действующей по - фото 395

В равновесии эти силы балансируются полной силой F внутр, действующей по поверхности А со стороны окружающего материала. Когда же этот кусочек не на­ходится в равновесии, а движется, сум­ма внутренних и внешних сил будет равна произведению массы на ускорение. При этом мы получаем

где rплотность материала а а его ускорение Теперь мы можем скомбинировать - фото 396

где r—плотность материала, а а— его ускорение. Теперь мы можем скомбинировать уравнения (39.23) и (39.24) и написать

Нашу запись можно упростить положив Тогда уравнение 3925 запишется в - фото 397

Нашу запись можно упростить, положив

Тогда уравнение 3925 запишется в виде Величина названная нами F - фото 398

Тогда уравнение (39.25) запишется в виде

Величина названная нами F внутр связана с напряжениями в материале Тензор - фото 399

Величина, названная нами F внутр, связана с напряжениями в материале. Тензор напряжений S ij был определен нами в гл. 31 таким образом, что x-компонента силы dF , действующей на эле­мент поверхности da с нормалью n, задается выражением

Отсюда хкомпонента силы F внутр действующей на наш кусочек равна интегралу - фото 400

Отсюда х-компонента силы F внутр, действующей на наш ку­сочек, равна интегралу от dF x по всей поверхности. Подстав­ляя это в x-компоненту уравнения (39.27), получаем

Оказалось что поверхностный интеграл связан с интегралом по объему а это - фото 401

Оказалось, что поверхностный интеграл связан с интегра­лом по объему, а это напоминает нам нечто знакомое по главам об электричестве. Заметьте, что если не обращать внимания на первый значок х в каждом из S в левой части (39.29), то она выг­лядит в точности как интеграл от величины (S·n), т.е. нормаль­ной компоненты вектора по поверхности. Она была бы равна потоку S через объем. А используя теорему Гаусса, поток можно было бы записать в виде объемного интеграла от дивергенции S. На самом деле все это справедливо независимо от того, есть ли у нас индекс х или нет. Это просто математическая теорема, которая доказывается интегрированием по частям. Другими словами, уравнение (39.29) можно превратить в

Теперь можно отбросить интегралы по объему и написать дифференциальное - фото 402

Теперь можно отбросить интегралы по объему и написать дифференциальное уравнение для любой компоненты f:

Оно говорит нам как связана сила действующая на единицу объема с тензором - фото 403

Оно говорит нам, как связана сила, действующая на единицу объема с тензором напряжения S ij .

Вот как работает эта теория внутренних движений твердого тела. Если первоначально нам известны перемещения, задавае­мые, скажем, вектором и, то можно найти деформации e ij . Из деформаций с помощью уравнения (39.12) можно получить напряжения. Затем с помощью уравнения (39.31) мы из напряжений можем найти плотности сил f. А зная f, мы из уравнения (39.26) получаем ускорение rв материале, которое подскажет нам, как изменятся перемещения. Собирая все это вместе, мы получаем ужасно сложные уравнения движения упругого твердого тела. Я просто напишу вам ответ для изо­тропного материала. Если вы воспользуетесь для S ij уравне­нием (39.20) и запишете e ij в виде 1/ 2 (du i /dx j +du j ]dx i ), то окончательно получите векторное уравнение:

Вы можете очень просто убедиться в том что уравнение должно иметь такую форму - фото 404

Вы можете очень просто убедиться в том, что уравнение должно иметь такую форму. Сила должна зависеть от второй производной — перемещения и. Но какие можно составить вторые производные и так, чтобы они были векторами? Одна из них С (С·u); это самый настоящий вектор. Есть еще только одна такая комбинация — это С 2u. Так что наиболее общей формой силы будет

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




7. Физика сплошных сред отзывы


Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x