Ричард Фейнман - 7. Физика сплошных сред
- Название:7. Физика сплошных сред
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 7. Физика сплошных сред краткое содержание
7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Перемещение u x пятнышка с координатой х пропорционально самому х.
Действительно,
Мы будем записывать u x следующим образом:
и x =е хх х.
Разумеется, константа пропорциональности е хх — это то же, что наше старое отношение Dl/l. (Скоро вы увидите, почему нам потребовался двойной индекс.)
Если же деформация неоднородна, то связь между х и u x в материале будет изменяться от точки к точке. В таком общем случае мы определим е хх как своего рода локальную величину Dl/l, т. е.
Это число, которое теперь будет функцией х, у и z, описывает величину растяжения в направлении оси х по всему куску желе. Возможны, конечно, растяжения и в направлении осей у и z. Мы будем описывать их величинами
Кроме того, нам нужно описать деформации типа сдвигов. Вообразите, что в первоначально невозмущенном желе вы выделили маленький кубик. Нажав на желе, мы изменяем его форму, и наш кубик может превратиться в параллелограмм (фиг. 39.3).
Фиг. 39.3. Однородная деформация сдвига.
При такой деформации перемещение в направлении х каждой частицы пропорционально ее координате у:
а перемещение в направлении у пропорционально х:
u y=(q/2)x. (39.5)
Таким образом, деформацию сдвигового типа можно описать с помощью
u x=e xy y u у =e yx x,
где
Теперь вы сочтете, что при неоднородной деформации обобщенную деформацию сдвига можно описать, определив величины е xy и е yx следующим образом:
Однако здесь есть некая трудность. Предположим, что перемещения u х и u y имеют вид
Они напоминают уравнения (39.4) и (39.5), за исключением того, что при u y стоит обратный знак. При таком перемещении маленький кубик из желе претерпевает простой поворот на угол q/2 (фиг. 39.4).
Фиг. 39.4. Однородный поворот. Никаких деформаций нет.
Никакой деформации здесь вообще нет, а есть просто вращение в пространстве. При этом никакого возмущения материала не происходит, а относительное положение всех атомов совершенно не изменяется. Нужно как-то устроить так, чтобы чистое вращение не входило в наше определение деформации сдвига. Указанием может послужить то, что если дu y /дх и дu x /ду равны и противоположны, никакого напряжения нет; этого можно добиться, определив
Для чистого вращения оба они равны нулю, но для чистого сдвига мы получаем, как и хотели, е ху =е у x .
В наиболее общем случае возмущения, который наряду со сдвигом может включать растяжение или сжатие, мы будем определять состояние деформации заданием девяти чисел:
Они образуют компоненты тензора деформации. Поскольку тензор этот симметричен (согласно нашему определению, е ху всегда равно е ух ) , то на самом деле различных чисел здесь только шесть. Вы помните (см. гл. 31) общее свойство всех тензоров — элементы его преобразуются при повороте подобно произведению компонент двух векторов. (Если А и В — векторы, то С ij =А i В j — тензор.) А каждое наше e ij есть произведение (или сумма таких произведений) компонент вектора
u= (u х , u у , u z ) и оператора С=( д / д x, д / д y, д / д z), который, как
мы знаем, преобразуется подобно вектору. Давайте вместо х, у и z писать x 1 , x 2 и x 3, а вместо u х , u y и u г писать u 1, u 2и u 3 ; тогда общий вид элемента тензора e ij будет выглядеть так:
где индексы i и j могут принимать значения 1, 2 или 3.
Когда мы имеем дело с однородной деформацией, которая может включать как растяжения, так и сдвиги, то все e ij — постоянные, и мы можем написать
u х =е хх х+е ху y+е х z г. (39.9)
(Начало координат выбрано в точке, где и равно нулю.) В этих случаях тензор деформации e ij дает соотношение между двумя векторами — вектором координаты r=(x, y, z) и вектором перемещения u= (u х , u у , u г ).
Если же деформация неоднородна, то любой кусочек желе может быть как-то искажен и, кроме того, могут возникнуть местные повороты. Когда все возмущения малы, мы получаем
где w ij, — антисимметричный тензор
описывающий поворот. Нам незачем беспокоиться о поворотах; займемся только деформацией, которая описывается симметричным тензором е ij .
§ 2. Тензор упругости
Теперь, чтобы описать деформации, мы должны связать их с внутренними силами — с напряжениями в материале. Мы предполагаем, что закон Гука справедлив для любого кусочка материала, т. е. что напряжения всюду пропорциональны деформациям. В гл. 31 мы определили тензор напряжений S ij как i-ю компоненту силы, действующей на единичной площадке, перпендикулярной оси j. Закон Гука говорит, что каждая компонента S ijлинейно связана с каждой компонентой напряжения. Но поскольку S и l содержат по девяти компонент, то всего для описания упругих свойств материала требуется 9X9=81 возможный коэффициент. Если материал однороден, то все эти коэффициенты будут постоянными. Мы обозначим их C ijkl определив посредством уравнения
Читать дальшеИнтервал:
Закладка: