Ричард Фейнман - 7. Физика сплошных сред

Тут можно читать онлайн Ричард Фейнман - 7. Физика сплошных сред - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    7. Физика сплошных сред
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Перемещение u x пятнышка с координатой х пропорционально самому х.

Действительно,

7 Физика сплошных сред - изображение 371

Мы будем записывать u x следующим образом:

и x хх х.

Разумеется, константа пропорциональности е хх это то же, что наше старое отношение Dl/l. (Скоро вы увидите, почему нам потребовался двойной индекс.)

Если же деформация неоднородна, то связь между х и u x в материале будет изменяться от точки к точке. В таком общем случае мы определим е хх как своего рода локальную величину Dl/l, т. е.

Это число которое теперь будет функцией х у и z описывает величину - фото 372

Это число, которое теперь будет функцией х, у и z, описывает величину растяжения в направлении оси х по всему куску желе. Возможны, конечно, растяжения и в направлении осей у и z. Мы будем описывать их величинами

Кроме того нам нужно описать деформации типа сдвигов Вообразите что в - фото 373

Кроме того, нам нужно описать деформации типа сдви­гов. Вообразите, что в перво­начально невозмущенном желе вы выделили маленький кубик. Нажав на желе, мы изменяем его форму, и наш кубик может превратиться в параллелограмм (фиг. 39.3).

Фиг 393 Однородная деформация сдвига При такой деформации перемещение в - фото 374

Фиг. 39.3. Однородная деформация сдвига.

При такой дефор­мации перемещение в направлении х каждой частицы пропорционально ее координате у:

а перемещение в направлении у пропорционально х u yq2x 395 Таким - фото 375

а перемещение в направлении у пропорционально х:

u y=(q/2)x. (39.5)

Таким образом, деформацию сдвигового типа можно описать с помощью

u x=e xy y u у =e yx x,

где

7 Физика сплошных сред - изображение 376

Теперь вы сочтете, что при неоднородной деформации обоб­щенную деформацию сдвига можно описать, определив вели­чины е xy и е yx следующим образом:

Однако здесь есть некая трудность Предположим что перемещения u х и u y - фото 377

Однако здесь есть некая трудность. Предположим, что пере­мещения u х и u y имеют вид

Они напоминают уравнения 394 и 395 за исключением того что при u y - фото 378

Они напоминают уравнения (39.4) и (39.5), за исключением того, что при u y стоит обратный знак. При таком перемещении маленький кубик из желе претерпевает простой поворот на угол q/2 (фиг. 39.4).

Фиг 394 Однородный поворот Никаких деформаций нет Никакой деформации - фото 379

Фиг. 39.4. Однородный поворот. Никаких деформаций нет.

Никакой деформации здесь вообще нет, а есть просто вращение в пространстве. При этом никакого возмущения материала не происходит, а относительное поло­жение всех атомов совершенно не изменяется. Нужно как-то устроить так, чтобы чистое вращение не входило в наше опре­деление деформации сдвига. Указанием может послужить то, что если дu y /дх и дu x /ду равны и противоположны, никакого напряжения нет; этого можно добиться, определив

Для чистого вращения оба они равны нулю но для чистого сдвига мы получаем как - фото 380

Для чистого вращения оба они равны нулю, но для чистого сдвига мы получаем, как и хотели, е ху у x .

В наиболее общем случае возмущения, который наряду со сдвигом может включать растяжение или сжатие, мы будем определять состояние деформации заданием девяти чисел:

Они образуют компоненты тензора деформации Поскольку тензор этот симметричен - фото 381

Они образуют компоненты тензора деформации. Поскольку тензор этот симметричен (согласно нашему определению, е ху всегда равно е ух ) , то на самом деле различных чисел здесь только шесть. Вы помните (см. гл. 31) общее свойство всех тен­зоров — элементы его преобразуются при повороте подобно произведению компонент двух векторов. (Если А и В — век­торы, то С ij i В j тензор.) А каждое наше e ij есть про­изведение (или сумма таких произведений) компонент вектора

u= (u х , u у , u z ) и оператора С=( д / д x, д / д y, д / д z), который, как

мы знаем, преобразуется подобно вектору. Давайте вместо х, у и z писать x 1 , x 2 и x 3, а вместо u х , u y и u г писать u 1, u 2и u 3 ; тогда общий вид элемента тензора e ij будет выглядеть так:

где индексы i и j могут принимать значения 1 2 или 3 Когда мы имеем дело с - фото 382

где индексы i и j могут принимать значения 1, 2 или 3.

Когда мы имеем дело с однородной деформацией, которая может включать как растяжения, так и сдвиги, то все e ij постоянные, и мы можем написать

u х хх х+е ху y+е х z г. (39.9)

(Начало координат выбрано в точке, где и равно нулю.) В этих случаях тензор деформации e ij дает соотношение между двумя векторами — вектором координаты r=(x, y, z) и вектором перемещения u= (u х , u у , u г ).

Если же деформация неоднородна, то любой кусочек желе может быть как-то искажен и, кроме того, могут возникнуть местные повороты. Когда все возмущения малы, мы получаем

где w ij антисимметричный тензор описывающий поворот Нам незачем - фото 383

где w ij, — антисимметричный тензор

описывающий поворот Нам незачем беспокоиться о поворотах займемся только - фото 384

описывающий поворот. Нам незачем беспокоиться о поворотах; займемся только деформацией, которая описывается симмет­ричным тензором е ij .

§ 2. Тензор упругости

Теперь, чтобы описать деформации, мы должны связать их с внутренними силами — с напряжениями в материале. Мы предполагаем, что закон Гука справедлив для любого кусочка материала, т. е. что напряжения всюду пропорциональны дефор­мациям. В гл. 31 мы определили тензор напряжений S ij как i-ю компоненту силы, действующей на единичной площадке, перпендикулярной оси j. Закон Гука говорит, что каждая ком­понента S ijлинейно связана с каждой компонентой напряжения. Но поскольку S и l содержат по девяти компонент, то всего для описания упругих свойств материала требуется 9X9=81 возможный коэффициент. Если материал однороден, то все эти коэффициенты будут постоянными. Мы обозначим их C ijkl определив посредством уравнения

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




7. Физика сплошных сред отзывы


Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x