Ричард Фейнман - 7. Физика сплошных сред

Тут можно читать онлайн Ричард Фейнман - 7. Физика сплошных сред - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    7. Физика сплошных сред
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако из-за симметрии выражения для энергии при пере­становке двух первых значений с двумя последними можно считать, что С кхуу уухх , поэтому

Таким же способом можно получить Заметьте наконец что любой член - фото 430

Таким же способом можно получить

Заметьте наконец что любой член содержащий один раз значок х или у равен - фото 431

Заметьте, наконец, что любой член, содержащий один раз значок х или у, равен нулю, как это было найдено ранее из соображений симметрии. Подытожим наши результаты:

Итак оказалось что мы способны связать макроскопические упругие постоянные с - фото 432

Итак, оказалось, что мы способны связать макроскопиче­ские упругие постоянные с атомными свойствами, которые проявляются в постоянных k 1и k 2. В нашем частном случае C ху x у =C ххуу . Эти члены для кубического кристалла, как вы, вероятно, заметили из хода вычислений, оказываются всегда равными, какие бы силы мы ни принимали во внимание, но только при условии, что силы действуют вдоль линии, соеди­няющей каждую пару атомов, т. е. до тех пор, пока силы между атомами подобны пружинкам и не имеют боковой составляющей (которая несомненно существует при ковалентной связи).

Наши вычисления можно сравнить с экспериментальными измерениями упругих постоянных. В табл. 39.2 приведены наблюдаемые величины трех упругих коэффициентов для не­которых кубических кристаллов. Вы, вероятно, обратили внимание на то, что С xxyy , вообще говоря, не равно С xyxy . При­чина заключается в том, что в металлах, подобных натрию и калию, межатомные силы не направлены по линии, соединяю­щей атомы, как предполагалось в нашей модели. Алмаз тоже не подчиняется этому закону, ибо силы в алмазе — это ковалентные силы, которые обладают особым свойством направ­ленности: «пружинки» предпочитают связывать атомы, распо­ложенные в вершинах тетраэдра. Такие ионные кристаллы, как фтористый литий или хлористый натрий и т. д., обладают почти всеми физическими свойствами, предположенными в на­шей модели; согласно данным табл. 39.2, постоянные С xxyy и С xyxy у них почти равны.

Таблица 39.2 · упругие постоянные

КУБИЧЕСКИХ КРИСТАЛЛОВ

Только хлористое серебро почемуто не хочет подчиняться условию С ххуу C xyxy - фото 433

Только хлористое серебро почему-то не хочет подчиняться условию С ххуу =C xyxy ..

* В литературе вы часто столкнетесь с другими обозначениями. Так, многие пишут:

Пластик с мудреным названием поливинилиденхлорид применяемый для - фото 434

* Пластик с мудреным названием «поливинилиденхлорид», применяе­мый для обертки.— Прим. ред.

* Предположим на минуту, что полный угол сдвига q делится на две равные части, чтобы деформация была симметричной относительно осей x и y.

Литература: Ch. Kittel, Introduction to Solid State Physics, 2nd ed., New York, 1956. (Имеется пере­вод: Ч. Киттель, Введение в физику твердого тела, Физматгиз, М., 1962.)

Глава 40

ТЕЧЕНИЕ «СУХОЙ» ВОДЫ

§ 1. Гидростатика

§ 2. Уравнение движения

§ 3. Стационарный поток; теорема Бернулли

§ 4. Циркуляция

§ 5. Вихревые линии

§ 1. Гидростатика

Кого не пленяет течение жидкости, кто не любуется течением воды! Все мы в детстве любили плескаться в ванне или возиться в гряз­ных лужах. Став постарше, мы восхищались плавным течением реки, водопадами и водо­воротами; мы любуемся ими, рядом с твердыми телами они кажутся нам почти одушевленными.

Предметом этой и следующей глав будет пове­дение жидкости, столь неожиданное и столь интересное. Попытки ребенка преградить путь маленькому ручейку, текущему по улице, и его удивление перед тем, как вода умудряется все же пробить себе дорогу, напоминает наши мно­голетние попытки понять механизм течения жидкости. Мы пытались мысленно преградить путь воды дамбой, т. е. получить законы и урав­нения, которые описывают поток. Рассказу об этих попытках и посвящена настоящая глава. А в следующей главе мы опишем тот уникаль­ный способ, с помощью которого вода проры­вает дамбу и ускользает от нас, не дав нам понять ее.

Я предполагаю, что элементарные свойства воды вам уже известны. Основное свойство, которое отличает жидкость от твердого тела, заключается в том, что жидкость не способна сдерживать ни мгновение напряжения сдви­га. Если к жидкости приложить напряжение сдвига, то она начинает двигаться. Густые жидкости, подобные меду, движутся менее легко, чем жидкости типа воды или воздуха. Мерой легкости, с которой жидкость течет, является ее вязкость. В этой главе мы рас­смотрим такие случаи, когда эффектом вяз­кости можно пренебречь. А эффекты вязкости отложим до следующей главы.

Начнем с рассмотрения гидростатики, т. е. теории непод­вижной жидкости. Если жидкость находится в покое, то на нее не действуют никакие сдвиговые силы (даже в вязкой жидкости). Поэтому закон гидростатики заключается в том, что напряже­ния внутри жидкости всегда нормальны к любой ее поверх­ности. Нормальная сила на единичную площадь называется давлением. Из того факта, что в неподвижной жидкости нет сдвигов, следует, что напряжение давления во всех направле­ниях одинаково (фиг. 40.1).

Фиг 401 В неподвижной жидкости сила действующая на единичную площадь любой - фото 435

Фиг. 40.1. В неподвижной жидкости сила, действующая на единичную площадь любой поверхности, перпендикулярна этой поверхности и при любых ориентациях поверхности одна и та же.

Займитесь самостоятельно доказа­тельством того, что если на любой плоскости в жидкости сдвиг отсутствует, то давление во всех направлениях должно быть одинаковым.

Давление в жидкости может изменяться от точки к точке. Так, в неподвижной жидкости на поверхности Земли давление будет изменяться с высотой из-за веса жидкости. Если плот­ность жидкости r считается постоянной и давление на некотором нулевом уровне обозначено через р 0 (фиг. 40.2), то давление на высоте h над этой точкой будет р=р 0 -rgh, где g — сила тяжести единицы массы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




7. Физика сплошных сред отзывы


Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x